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Interaction of pathogenic yeasts with phagocytes: survival,
persistence and escape
Katja Seider1, Antje Heyken1, Anja Lüttich1, Pedro Miramón1 and
Bernhard Hube1,2
Pathogenic yeasts, either from the environment or the normal

flora, have to face phagocytic cells that constitute the first line

of defence during infection. In order to evade or counteract

attack by phagocytes, pathogenic yeasts have acquired a

repertoire of strategies to survive, colonize and infect the host.

In this review we focus on the interaction of yeasts, such as

Candida, Histoplasma or Cryptococcus species, with

macrophages or neutrophils. We discuss strategies used by

these fungi to prevent phagocytosis or to counteract

phagocytic activities. We go on to describe the strategies that

permit intracellular survival within phagocytes and that may

eventually lead to damage of and escape from the phagocyte.
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Introduction
Pathogenic yeasts are either commensals of the normal

microbial flora or environmental yeast, which incidentally

infect the human host. Amongst the commensal fungal

pathogens are Candida albicans and Candida glabrata,

which colonize different body locations. They do not

usually elicit overt immune recognition and inflam-

mation, but may occasionally face immune cells. Environ-

mental fungal pathogens include Histoplasma capsulatum,

Cryptococcus neoformans, Paracoccidioides brasiliensis or

Blastomyces dermatitidis, and grow as saprophytes in

environmental niches, which can sometimes reflect cer-

tain aspects of the host environment. These pathogens

may enter the human host by inhalation of spores or

mycelial fragments, which then convert into parasitic

forms inside the body where they, by applying strategies

adapted in their environmental niches, may cause disease.
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In the host, potentially pathogenic yeasts can be killed by

phagocytes; however, certain species have developed

mechanisms to avoid such killing. In this review, we

focus on the evasion strategies of pathogenic yeasts from

killing by phagocytic cells (Figure 1).

Prevention of phagocytosis
Pathogenic fungi have evolved efficient strategies to

overcome killing by effector cells of the innate immune

system. One possibility is simply to avoid contact with

immune cells by evading recognition, often mediated by

masking of immunostimulatory surface molecules.

Another tactic is to prevent phagocytosis by either the

use of physical barriers, inhibiting deposition of host

opsonic molecules or by exerting influence on the cytos-

keleton-based phagocytic machinery of immune effector

cells.

Avoiding immune recognition: shielding PAMPs and

physical barriers

The first step in induction of an antifungal innate

immune response depends on recognition of conserved

fungal structures by front-line immune cells. These so-

called pathogen-associated molecular patterns (PAMPs)

can be either secreted or on the fungal surface. Fungal

pathogens harbour a variety of PAMPs including b-glu-

can, chitin and mannoproteins that are detected by a

corresponding set of host transmembrane pattern-recog-

nition receptors (PRRs). The resulting combination of

PRR–ligand interactions will determine a customized

response depending on the pathogen and the type of

immune effector cell. Recognition normally initiates sig-

nalling cascades, resulting in phagocytosis, secretion of

microbicidal compounds and production of pro-inflam-

matory mediators.

Avoiding such detection can be considered as the sim-

plest immune evasion strategy. For example, C. albicans
shields its immunostimulatory b-glucan, known to be

recognized by the PRR Dectin-1, with a mannoprotein

coat, thereby making itself less visible to the host. A

recent study, working with gene deletion strains, recon-

firmed the importance of O-linked and N-linked man-

nans in avoiding phagocytosis [1]. However, the same

report also implicated immunostimulatory PAMPs, like

phosphomannan, in enhancing the uptake by macro-

phages. Additionally it should be noted that mannopro-

teins themselves are potent PAMPs, recognized by
www.sciencedirect.com
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Figure 1

Model for immune evasion and modulation strategies used by pathogenic fungi. (a) A protective layer (e.g. mannoproteins of C. albicans, the capsule

of C. neoformans or a-glucan of H. capsulatum and P. brasiliensis) masks immunostimulatory pathogen-associated molecular patterns (PAMPs). (b)
The phagosome maturation process within phagocytes normally leads to the formation of a phagolysosomes (by fusion with early endosomes [EE], late

endosomes [LE] and lysosomes [LYS]), where microbes are killed and digested (black arrows). Some pathogenic fungi are able to alter this process,

yielding a compartment in which they can survive, replicate and finally escape (red arrows). (c) Within the phagosome, fungal pathogens use

mechanism to adapt to the hostile environment or counteract antimicrobial activities.
several PRRs. Therefore, the recognition of C. albicans,
appears to be a complex multiple-level process involving

specific receptor systems [2]. Nevertheless, shielding b-

glucan with mannoproteins seems to benefit the fungus.

By switching morphology from yeast to hyphae C. albicans
circumvents b-glucan exposure at birth scars, which

appear during normal yeast growth [3]. However, during

murine infection, no differences in b-glucan exposure

between yeast form and hyphal cells were observable at

later stages [4��]. Of note, only the minor cell wall

component b-1,6-glucan efficiently induced engulfment

of C. albicans by human neutrophils, in contrast to the

predominant overlaying b-1,3-glucan [5].

A similar mechanism enables H. capsulatum and P.
brasiliensis to avoid detection: an a-(1,3)-glucan layer

overlays the immunostimulatory b-glucan signatures

of H. capsulatum, whilst P. brasiliensis modifies its cell

wall glucan polymer linkage from a b-1,3-glucan to

an a-1,3-glucan during transition to the pathogenic

yeast form [3]. Moreover, P. brasiliensis is characterized
www.sciencedirect.com
by a multiple budding phenotype and polymorphic

cell growth, leading to the formation of cells with

extreme variations in shape and size. A reduction in

cell size renders P. brasiliensis completely avirulent

and more susceptible to phagocytosis by macrophages

[6].

The most prominent virulence factor of C. neoformans is

an extensive polysaccharide capsule with antiphagocytic

properties, which even increases in size during infection

(reviewed in [7]). Accordingly, hypermucoid variants are

more resistant to phagocytosis and therefore may promote

immune evasion during establishment of chronic infec-

tions [8�]. Despite the inhibitory role of the capsule,

phagocytosis can still occur, but then mainly depends

on opsonization by complement proteins or antibodies.

Mutants lacking the capsule, on the other hand, can be

phagocytosed in the absence of opsonins. More recently,

novel capsule-independent mechanisms of C. neoformans
to avoid phagocytosis have been identified. In particular,

a GATA family of transcription factors have been
Current Opinion in Microbiology 2010, 13:392–400
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described which are involved in avoiding recognition by

immune cells [9��].

Modulating complement-mediated uptake

Phagocytosis can either be directly mediated by PRRs or

indirectly through host opsonins. The complement sys-

tem consists of some 30 proteins, either circulating in

blood plasma or residing on cell surfaces; the deposition of

these proteins on foreign surfaces not only promotes

recognition and phagocytosis, but also the recruitment

of inflammatory cells. Because the complement system

has the potential to severely damage host tissues, comp-

lement activation must be tightly controlled by specific

regulators. Remarkably, certain fungal pathogens have

taken advantage of these regulators, achieving comp-

lement evasion.

C. albicans, for example, possesses two proteins, the pH-

regulated antigen 1 (Pra1) and a phosphoglycerate mutase

(Gpm1), which can bind host complement regulators

(either Factor H or FHL-1 binding protein) — thus pro-

viding a protective layer which shields against comp-

lement deposition [10,11]. Similarly, C. neoformans
possesses the antiphagocytic protein, App1, which binds

to complement receptors 3 and 2 thereby inhibiting

phagocytosis by alveolar macrophages [12]. In addition

to complement proteins, collectins, such as mannose-

binding lectin (MBL) and surfactant protein A (SP-A),

are host molecules which opsonize fungal cells. B. derma-
titidis, however, binds MBL, thereby masking its immu-

nogenic b-glucan, preventing recognition and tumour

necrosis factor-a secretion by macrophages [13]. In con-

trast, capsulated C. neoformans cells are resistant to MBL

binding [14] and SP-A binding sites are concealed by the

cryptococcal capsule (even though SP-A binding to

encapsulated C. neoformans can be facilitated by immu-

noglobulin G) [15]. As already mentioned, the capsule of

C. neoformans itself is antiphagocytic and its enlargement

can additionally function in inhibiting deposition of opso-

nins [7].

Intracellular survival: manipulating the host,
detoxifying antimicrobial compounds and
gaining nutrients
Shielding of stimulatory PAMPs or complement evasion

represent effective fungal strategies for circumventing

the host innate immune system and phagocytosis. More-

over, C. albicans and C. glabrata, for instance, secrete

metabolites which impair the uptake efficiency of macro-

phages, probably by interfering with the host cell cytos-

keleton [16]. However, despite the mechanisms

described here, fungal pathogens cannot completely

elude phagocytosis.

Following recognition of a microbe, phagocytes initiate

engulfment leading to the formation of a phagosome.

This vesicle then undergoes a series of fission and fusion
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events, associated with alterations of the surrounding

membrane and vacuolar content, ultimately leading to

the formation of a specialized organelle: the phagolyso-

some. The degradative and microbicidal microenviron-

ment of this organelle is associated with a reduction in

pH, the presence of hydrolytic enzymes, defensins as well

as other antimicrobial peptides and the generation of

toxic oxidative compounds. Moreover, it exhibits severe

nutrient and trace element limitation. Nevertheless, sev-

eral fungi have developed strategies to survive within

phagocytes. These strategies include: activities or attri-

butes which alter the phagolysosome maturation process,

scavenging of toxic compounds; escape from the phago-

lysosome; or adaptation to and survival within the harsh

environment within the phagocyte.

Manipulating phagosome maturation

More than 10 years ago, it was discovered, that H. capsu-
latum can survive phagocytosis and even replicate within

macrophages. Phagolysosomes containing H. capsulatum
maintain a pH of about 6.5, thereby minimizing the

activity of lysosomal hydrolases, but still allowing iron

release from host transferrin. The exact mechanism

underlying this remains unclear, but it is known that

the fungus inhibits accumulation of V-ATPase, the pro-

ton pump of the phagolysosomal membrane [17].

Additionally, the H. capsulatum saposin-like calcium bind-

ing protein (CBP), expressed specifically by the patho-

genic yeast form, may play a key role in altering the

phagosomal environment [18]. CBP has a high structural

homology to mammalian saposin-B and presumably inter-

acts with host lipids of the phagosome [19��]. Although

these phenomena depend on the host cell type [20] it

appears that H. capsulatum can actively manipulate the

phagosome composition and the host killing machinery.

C. albicans can also manipulate phagosome maturation,

resist killing by macrophages and replicates intracellularly

[21]. Although the ability to block phagosome maturation

does not require the dimorphic transition, comparison

with a non-filamentous mutant showed that the filamen-

tous form is more capable of controlling phagosomal

composition [22].

C. neoformans was originally described as an intracellular

pathogen that resides in acidified phagolysosomes and

does not avoid lysosomal fusion [23]. However, further

studies revealed that fungal replication takes place in

enlarged phagosomes and is associated with the accumu-

lation of shredded fungal polysaccharides and the for-

mation of leaky membranes, providing access to nutrients

of the cytoplasm [24]. Furthermore, C. neoformans infec-

tion of macrophages is accompanied by the formation of a

large number of vesicles [24] that originate from the

phagosome. Besides fungal lipids and polysaccharide,

these vesicles contain a variety of virulence-associated

enzymes, for example laccase, urease and phosphatase
www.sciencedirect.com
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[25] and have been recently shown to be involved in

proper fungal melanization [26]. These so-called ‘viru-

lence bags’ may function in compromising host cell

survival during infection.

Interestingly, such a mechanism of transcellular vesicular

secretion is also used by H. capsulatum and other asco-

mycetes, suggesting a more generally applicable fungal

activity [27].

Transcriptional reprogramming within phagocytes

Once phagocytosed, fungal pathogens exhibit dramatic

transcriptional and translational reprogramming, reflect-

ing survival strategies and adaptation to the harsh internal

environment of the phagocyte.

Comprehensive transcriptional and proteomic studies

have provided insights into the response of C. albicans
to phagocyte ingestion [28]. Immediately following

macrophage phagocytosis, fungal yeast cells experience

a shift to alternative carbon sources, reflected by induc-

tion of the glyoxylate cycle, gluconeogenesis and fatty

acid degradation, together with repression of glycolysis

and translation, suggesting that glucose is scarce in macro-

phages. Alongside this starvation response, substantial

non-metabolic transcriptional profiles were also detected.

These included the induction of oxidative stress

response, DNA damage repair, arginine biosynthesis,

peptide utilization and an abundant number of C. albi-
cans-specific genes [29]. Similar transcriptional patterns

were also detected in C. neoformans, Both, C. albicans and

C. neoformans appear to be exposed to carbon limitation, as

suggested by the upregulation of glucose and other

carbohydrate transporter genes, whereas genes encoding

key enzymes of the glyoxylate cycle and gluconeogenesis

were only upregulated by C. albicans. In contrast, C.
neoformans induces genes encoding extracellular lipases,

which may digest host lipids, fatty acids transporters and

enzymes involved in b-oxidation and peroxisome for-

mation [30].

Degradation and recycling of endogenous cellular com-

ponents (autophagy) represents another strategy of adap-

tation when nutrients are limited. This process is applied

by C. neoformans and C. glabrata within macrophages

[31,32], but does not seem to play an important role for

C. albicans survival [33].

In summary, phagocytosed fungal cells have the ability to

precisely sense the surrounding environment and appro-

priately modify their transcriptional profile.

Counteracting the oxidative burst

The oxidative stress that fungal pathogens experience

within the phagosome is presumably because of a toxic

cocktail of reactive oxygen (ROS), nitrogen (RNS) and

chloride species generated by phagocytes and the con-
www.sciencedirect.com
sequent damage of DNA, proteins and lipids contributes

to killing of fungal cells. Therefore, in order to survive

phagocytosis, a rapid response and induction of protective

mechanisms by fungal pathogens is necessary.

Recent in vitro studies indicate that C. albicans and C.
glabrata actively suppress ROS production in phagocytes,

whereas S. cerevisiae does not [34]. Furthermore, transcrip-

tional and proteomic studies of C. albicans and C. glabrata
exposed to exogenous ROS revealed an activation of

detoxifying enzymes with antioxidant function including

catalases, superoxide dismutases and components of the

thioredoxin and glutaredoxin systems [35–38]. Inactivation

of detoxifying enzymes, such as superoxide dismutases, in

C. albicans accordingly lead to severe attenuations in viru-

lence and viability inside immune cells [39,40].

C. albicans cells exposed to nitric oxide induce another

specific detoxification programme which includes the

induction of nitric oxide dioxygenase, catalases and

Yhb1, a flavohemoglobin that converts NO to harmless

nitrate [41,42]. However, mice with defects in the indu-

cible nitric oxide synthase (NOS2) are not more suscept-

ible to C. albicans infection than wild type mice,

suggesting that RNS play a minor role for fungal killing

in vivo (at least in mice) [41].

Similar to C. albicans, the release of RNS by pre-stimu-

lated macrophages is suppressed by C. neoformans in a

capsule-independent manner [43]. C. neoformans there-

fore uses enzymes involved in nitric oxide detoxification

and damage repair [44]. Several studies have identified

individual proteins of the remarkably robust and redun-

dant antioxidant system of C. neoformans. These include

four catalases, two superoxide dismutases, glutathione

peroxidases, thioredoxin proteins, the inositol phospho-

sphingolipid-phospholipase C1 (Isc1) and the protein

kinase C (Pkc1), which are essential for surviving the

oxidative environment of macrophages [45–50]. In

addition to capsule-independent mechanisms, the enlar-

gement of the capsule size during infection has been

shown to provide additional protection against oxidative

stress and antimicrobial peptides [51].

Moreover, pigment production of C. neoformans, P. bra-
siliensis or C. glabrata is believed to scavenge ROS pro-

duced by phagocytes [52,53].

Different virulence factors with importance for

adaptation and survival

In addition to nutritional adaptation and detoxification of

ROS or RNS, pathogenic fungi possess a variety of further

factors and activities which can counteract phagosomal

killing.

For example, production of trehalose [54,55] and glyco-

sylphosphatidylinositol-linked aspartic proteases [56] are
Current Opinion in Microbiology 2010, 13:392–400
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crucial for survival of C. albicans or C. glabrata after

ingestion by macrophages. Furthermore, Vps41, which

functions in the alkaline phosphatase and carboxypepti-

dase Y sorting pathways, appears to be important for

response to starvation and is essential for survival of C.
neoformans in macrophages [57].

Microarray data indicate a central role of the Gpa1–
cAMP–PKA pathway for growth of C. neoformans in

macrophages. This pathway not only coordinates tran-

scription of genes involved in capsule and melanin pro-

duction, but also responses to nutrient limitation within

phagosomes. In accordance, mutants of Gpa1 or Pka1

display reduced growth in macrophages [30]. In general,

the ability to deal with nutrient limiting conditions can be

considered as a key attribute for intracellular survival.

This is also true for indispensable micronutrients such as

iron. H. capsulatum, for example, gains iron via three

different strategies. Preventing complete phagosomal

acidification allows gradual iron release from transferrin

[58]. Another strategy relies on the secretion of side-

rophores; consequently, the disruption of SID1, encoding

the enzyme that catalyzes the first step in siderophore

biosynthesis, leads to a significant growth defect in mur-

ine bone-marrow-derived macrophages and attenuation

in a mouse infection model [59]. The third strategy

depends on cell surface-bound or secreted enzymes with

iron reducing activity. A recent study presented evidence

for a role of a secreted g-glutamyltransferase (Ggt1) in

extracellular enzymatic iron reduction and its importance

for survival during co-incubation with macrophages [60].

Other activities which contribute to survival of C. neofor-
mans within macrophages are transport activities [61,62]

and utilization of host lipid components for production of

cryptococcal eicosanoids, which inhibit macrophage fun-

gistatic activity [63].

Damaging phagocytes and escape
Fungal exit strategies

Although microbial intracellular survival strategies allow

persistence within phagocytes, pathogens eventually

escape to spread and infect distant tissue. Studies on

fungal exit strategies are mainly focussed on C. albicans
and C. neoformans.

The yeast-to-hyphae transition of C. albicans plays a

pivotal role in facilitating escape from phagocytes [64].

Within macrophages, production of carbon dioxide

induces hyphal growth allowing piercing and killing of

macrophages [65�].

C. neoformans can induce host cell apoptosis [66]; alter-

natively, this fungus can persist asymptomatically until

the onset of infection. In the latter situation, it is

beneficial for the fungus to escape from the phagocyte
Current Opinion in Microbiology 2010, 13:392–400
without triggering host cell death and inflammation.

Extrusion (or expulsion) represents a novel escape mech-

anism employed by C. neoformans [67,68]. During this

process, intra-phagosomal replication and homotypic pha-

gosomal fusion leads to the formation of massive vacuoles,

followed by extrusion of the phagosomes and release of

the pathogen. Macrophages and expelled yeast cells

appear morphologically normal and remain viable. In

addition to exiting to the extracellular milieu, the fungus

can also undergo lateral transfer from infected donor cells

to uninfected neighbouring cells, which may allow con-

tinuous concealment from the immune system [69,70].

Interestingly, another strategy involves macrophage mito-

sis. It has recently been shown, that macrophages resume

proliferation, especially during inflammation. Because of

the fusion of C. neoformans-containing phagosomes the

fungus affects intracellular post-mitotic delivery, promot-

ing unequal sorting into daughter cells, which appears to

enhance exocytosis. Another intriguing observation is the

fusion of two daughter macrophages after the cell

division, which is limited to yeast infected cells [71].

Dissemination within the host

Exiting phagocytes without triggering inflammation, lat-

eral transfer to neighbouring cells, as well as avoidance of

a pro-inflammatory immune response, not only mediate

survival of C. neoformans, but may also contribute to

prolonged periods of latency until impaired immunity

of the infected individual permits symptomatic onset of

disease (Figure 2).

It has recently been suggested that C. neoformans may

promote its own uptake by monocytes or macrophages,

using the immune cell as a ‘Trojan horse’ for distribution

within the host, whilst remaining undetected by the

immune system. This was supported by the observation

that binding of the host surfactant protein D (SP-D) not

only enhances C. neoformans uptake by macrophages but

also protects fungal cells from intracellular killing [72�].
However, this conflicts with the described antiphagocytic

properties of the predominant capsular polysaccharide

glucuronoxylomannan: indeed, the presence of the cap-

sule is inversely related to SP-D binding. It has been

hypothesized that initial infections are caused by desic-

cated yeast cells or basidiospores with a reduced capsule

size. This would permit opsonization with SP-D and

initiate phagocytosis by alveolar macrophages, allowing

fungal cells to gain access to intracellular niches. Differ-

ent stages of infection might therefore be influenced by

different levels of fungal virulence and defence attri-

butes. For example, whilst a thick capsule enhances

fungal survival within macrophages, a reduction in cap-

sule size has been shown to allow better dissemination to

the brain [73]. Additionally, using a mouse model of

dissemination, together with bone-marrow-derived

monocytes, pre-infected with C. neoformans, it was

demonstrated that the fungus may hijack monocytes in
www.sciencedirect.com
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Figure 2

Different virulence mechanisms of pathogenic yeasts during interactions with phagocytes. (a) During the transition from conidia to yeast, H.

capsulatum produces a-(1,3)-Glucan (green) exclusively around the yeast buds (from Rappleye et al. PNAS 2007 104:1366–1370 with permission from

the National Academy of Sciences, U S A). (b) Intracellular budding of C. neoformans strain 24067 in J774 macrophages (arrows indicate budding site)

(from Tucker et al. PNAS 2002 99:3165–3170 (Figure 1b) with permission from the National Academy of Sciences, U S A). (c) Yeast-to-hyphae

transition of C. albicans plays a pivotal role in facilitating escape from phagocytes (arrows indicate piercing sites).
order to be transported across the blood–brain barrier

[74�].

Immune evasion via concealment in intracellular niches is

also employed by H. capsulatum and P. brasiliensis. Both

organisms delay host cell death of neutrophils and also, in

the case of H. capsulatum, mononuclear cells, by inhibiting

apoptosis [75,76]. Such immune evasion strategies might

support fungal survival by maintaining an environment to

which these fungi are pre-adapted. Nevertheless, these

results must be interpreted with caution, as it is also

possible that delayed death is also favourable for the host,

permitting enough time to produce antimicrobial

mediators and finally combat the fungus. This exempli-

fies the fact that strategies employed by fungal pathogens

to overcome host innate immunity are always in close

competition with a successful host defence response.

Conclusions
Some of the strategies of opportunistic pathogenic yeasts

to avoid or survive attack from phagocytes, to persist

within phagocytes or to escape from phagocytes reviewed

here are also employed by bacteria and parasites; how-

ever, some seem to be specific for fungi — for example,

the role of morphology for C. albicans escape from pha-

gocytes. Certain pathogenic yeasts can multiply inside of

phagocytes, a mechanism which may protect them during

the early stages of infection, but which may also be a

strategy for persistence. Indeed, intracellular survival of

pathogenic yeasts may be more common than anticipated

and may enable some fungal cells to persist within hosts

for long periods. Such unrecognized persistence in the

human body may represent a source of disease when the

immune system becomes attenuated. This may include

yeasts not previously described as facultative intracellular
www.sciencedirect.com
fungi, for example C. glabrata, which can persist in mice

for long periods without causing disease [77]. The strat-

egies employed by such fungi to evade or survive attack

by phagocytes remain to be investigated.
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