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Abstract

Cell-substrate adherence is a fundamental property of microorganisms that enables them to exist in biofilms. Our study
focuses on adherence of the fungal pathogen Candida albicans to one substrate, silicone, that is relevant to device-
associated infection. We conducted a mutant screen with a quantitative flow-cell assay to identify thirty transcription factors
that are required for adherence. We then combined nanoString gene expression profiling with functional analysis to
elucidate relationships among these transcription factors, with two major goals: to extend our understanding of
transcription factors previously known to govern adherence or biofilm formation, and to gain insight into the many
transcription factors we identified that were relatively uncharacterized, particularly in the context of adherence or cell
surface biogenesis. With regard to the first goal, we have discovered a role for biofilm regulator Bcr1 in adherence, and
found that biofilm regulator Ace2 is a major functional target of chromatin remodeling factor Snf5. In addition, Bcr1 and
Ace2 share several target genes, pointing to a new connection between them. With regard to the second goal, our findings
reveal existence of a large regulatory network that connects eleven adherence regulators, the zinc-response regulator Zap1,
and approximately one quarter of the predicted cell surface protein genes in this organism. This limited yet sensitive
glimpse of mutant gene expression changes had thus defined one of the broadest cell surface regulatory networks in C.
albicans.
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Introduction

Microorganisms naturally exist primarily in association with

surfaces in communities called biofilms. Central to the formation

of biofilms is the ability of microbial cells to adhere to substrates.

Adherence mechanisms are diverse, and involve specific cell

surface proteins (adhesins), more complex surface structures such

as pili, and secreted extracellular matrix material [1–4]. Adher-

ence is often found to be highly regulated, reflecting the need for

biofilms to release cells in order to colonize new sites.

Biofilms are clinically significant as the basis for infections

associated with implanted medical devices [5,6]. Adherence of a

pathogen to a device surface is a critical early step in formation of

these biofilms. For device-associated biofilms, definition of the

mechanisms that regulate cell-substrate adherence provides insight

into how these biofilms form. That understanding may in turn

suggest simple therapeutic or preventive strategies.

Our focus is the fungal pathogen Candida albicans, a natural

commensal of our gastrointestinal and genitourinary tracts that is

usually benign. It causes infections associated with venous catheters,

urinary catheters, and several other implanted devices [7,8]. Our

overall understanding of C. albicans biofilm formation has expanded

dramatically in recent years, and several regulators and effectors

that contribute to biofilm formation are known [1,9,10]. Several key

effectors have been identified among targets of transcription factors

that are required for normal biofilm formation. The approach of

using a transcription factor mutant to identify functional targets has

proven particularly useful because many effectors are specified by

duplicated genes or gene families [1].

In this study we focus on an early step in abiotic surface biofilm

formation, the adherence of yeast form cells to a substrate. We find

that this process is governed by over 10% of the C. albicans

transcription factors, thus indicating that adherence is coupled to

numerous regulatory signals. We use nanoString profiling [11] to

analyze gene expression changes for all of these transcription factor

mutants. Although nanoString probes cover only a portion of the

transcriptome, the sensitivity exceeds that of microarrays [11]. In

addition, the probes recognize RNA directly, avoiding possible bias

from cDNA conversion [11]. Our findings reveal new connections

between these regulators that we validate with functional assays. In

addition, our results define a group of 37 cell surface protein genes

that are coordinately regulated by twelve transcription factors. This

newly discovered regulon may couple cell-substrate adherence to

environmental signals.

Results

Regulators of substrate adherence
We assayed 197 transcription factor insertion mutants for

altered cell-substrate adherence in a quantitative flow-cell assay,
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using a silicone (poly-dimethyl siloxane) substrate. We identified

mutants in 30 genes with significantly reduced adherence compared

to the wild type strain (Figure 1A; Table S1). We used three

approaches to confirm that the known insertion mutation in each

strain, rather than spurious mutations, caused its adherence defect

(summarized in Table 1 under ‘‘Confirmation approaches’’). First,

for 26 genes, independent insertion mutant isolates were available.

We assayed adherence of those strains, and found that they also

displayed reduced adherence (Table S1). Second, for 25 genes,

independently constructed deletion mutants were obtained in the

BWP17 or SN152 strain backgrounds [12]. Adherence assays of

those strains also confirmed the mutants’ reduced adherence

(Supplemental Tables S1B, S1C). Third, for 19 genes, we

complemented the mutation by introducing a wild-type copy of

the affected gene into the respective insertion or deletion mutant; we

observed that wild-type levels of adherence were restored (Table

S1). In total, our results verify the adherence defects for 29 of the

mutants (Table 1).

Cell-substrate adherence is often viewed as the first step in biofilm

formation [1,13]. Indeed, our findings above indicate that BCR1 and

ACE2 are required for cell-substrate adherence, and prior studies

have shown them to be required for biofilm formation [14,15].

Therefore, all of the adherence-defective insertion mutants were

tested for biofilm formation in vitro. Under our standard assay

conditions [14], mutants defective in SNF5 (discussed below) and

ARG81 (Figure S1) were unable to form adherent biofilms in vitro.

Therefore, some adherence-defective mutants are defective in

biofilm formation in vitro, while others represent a distinct functional

class.

Control of substrate adherence by Bcr1 and Als1
The transcription factor Bcr1 has been proposed to promote

cell-cell adherence [16], but was not known to mediate cell-

substrate adherence. We confirmed the substrate adherence defect

of the bcr12/2 insertion mutant (Figure 1A) with the finding that

a bcr1D/D deletion mutant had 3- to 4-fold reduced cell-substrate

adherence compared to wild-type and complemented control

strains (Figure 1B). (We refer to a homozygous insertion mutant as

‘‘yfg12/2’’, and a homozygous deletion mutant as ‘‘yfg1D/D’’.)

We tested the major known functional targets of Bcr1, which

include adhesins Als1, Als3, and Hwp1 [16,17], for roles in cell-

substrate adherence. Deletion of ALS1 alone caused a significant

adherence defect, and overexpression of ALS1 improved adher-

ence in the bcr1D/D background (Figure 1B). Deletion of either

ALS3 or HWP1 did not affect adherence (Figure 1B). These results

indicate that Bcr1 is required for cell-substrate adherence, and that

this function is mediated largely or entirely by the adhesin Als1.

Roles of adherence regulators in gene expression
We used nanoString gene expression profiling to elucidate

possible targets and pathway relationships among transcriptional

regulators of adherence. RNA levels were measured for 293 genes.

The surveyed genes included all 113 predicted GPI-linked cell

surface protein genes [18,19], representative gene targets of known

biofilm regulators Ace2, Bcr1, and Zap1 [14,15,20], and a spectrum

of genes related to hyphal formation, cell wall integrity, and stress

responses (Table S2). We assayed gene expression in the 30

adherence-defective transcription factor mutants, five additional

mutants with altered biofilm formation ability (ire12/2, gin42/2,

cbk12/2, tec12/2, zap1D/D [14,20,21]), and the reference wild-

type strain DAY185. Gene expression was assayed after growth for

8 hr at 37uC in liquid Spider medium, a medium we have used

previously for analysis of biofilm-defective mutants [14,20]. We

used these growth conditions, despite the fact that they are different

from those we used in our adherence assay, for two reasons. First,

we sought to compare gene expression measurements with this new

platform to our previously published microarray data. In fact, the

new data agreed well with previous datasets: the nanoString probe

set confirmed expression patterns for 20 previously reported Bcr1-

regulated genes and 5 previously reported Zap1-regulated genes

[14,20]. Second, it seemed reasonable that gene expression

comparisons among mutants might allow functional relationships

to be inferred, regardless of the specific growth condition.

Functional tests that we present below illustrate the value of the

gene expression dataset for this purpose.

The adherence-defective mutants presented a range of pleiot-

ropy in gene expression alterations (Table 1). Mutations in WAR1,

ZFU2, and ZNC1 had fairly mild effects, causing statistically

significant changes in expression of only 16–22 of the genes

assayed. Mutations in ADA2, BCR1, and SNF5 were relatively

severe, causing statistically significant changes in expression of

138–178 genes. Only two of the newly identified mutants had

significantly reduced expression of ALS1 (try32/2 and try42/2),

and none had reduced expression of BCR1, thus indicating that the

new mutations may define distinct adherence mechanisms (Table

S2). An overview of the dataset reveals four striking findings

(Figure 2A and 2B, Table S2). First, expression of a cluster of genes

that includes hyphal- and virulence-associated genes (HYVIR

cluster) is altered in 16 of the adherence-defective mutants.

Interestingly, some additional genes (such as CRH11, orf19.5626,

HSP104) cluster with the familiar hyphal/virulence genes, based

on their co-regulation in several mutants, and may have previously

unrecognized roles in these processes. Most of the mutants with

altered hyphal/virulence gene expression have no previously

described hyphal morphogenesis defect [12]. In the majority of

these mutants, the hyphal/virulence genes are down-regulated

compared to the wild type. Second, most targets of the

transcription factor Ace2 (RAM cluster, named for ‘‘Regulation

of Ace2 and polarized morphogenesis’’ [22]), are regulated by

transcription factors Snf5, Cas5, Bcr1, and Met4. We probe the

significance of the Snf5-RAM relationship below. Third, expres-

sion of zinc uptake genes and other known targets of the

transcription factor Zap1 (ZAPT cluster [20]) is altered by 17

adherence-defective transcription factor mutants. For this set of

genes, roughly equal numbers of mutants display up- or down-

regulation. Finally, a novel group of 48 genes (CSTAR cluster

[‘‘Cell surface targets of adherence regulators’’]) displays altered

expression in 11 adherence-defective transcription factor mutants.

The CSTAR genes include 37 genes that specify cell wall or

secreted proteins. These genes are also regulated by the

transcription factor Zap1; we examine the Zap1-adherence

relationship below. There were additional clusters of co-regulated

Author Summary

Most microorganisms adhere to surfaces in nature, leading
to formation of complex communities called biofilms.
Pathogen adherence to medical devices is the basis for
device-associated infection. We have focused on the
control of adherence in the fungal pathogen Candida
albicans. We find that this process is under control of thirty
transcriptional regulators. Our analysis of gene expression
in regulatory mutants with altered adherence provides
new understanding of the relationships among known
regulators. In addition, we find evidence for a large
regulatory network that connects one quarter of all cell
surface protein genes.
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genes, but we could not define common functional or structural

features among them. This overview has identified a major group

of co-regulated genes, the CSTAR cluster, and has defined shared

features among many of the new adherence regulators.

We used the gene expression data to deduce network

relationships in order to define possible functional relationships

among the adherence regulators (Figure 2B). This analysis points

toward several findings. First, many adherence regulators control

Figure 1. Adherence of wild-type and mutant strains. Adherence to silicone was measured in a Fluxion flow cell as described in Methods, and
is expressed relative to the wild-type reference strain. Panel A. Transcription factor insertion mutants. The mutants presented had statistically
significant decreases (p value #0.05) in adherence when compared to reference strain DAY286. The zap1D/D mutant is included for reference.
Measurements indicate mean and standard deviation for 1–3 isolates, as indicated in Table S1 worksheet 1A. Panel B. Analysis of Bcr1 and its target
genes. The wild-type strain DAY185 was used as a standard for comparison to mutants bcr1D/D (CJN702), bcr1D/D+pBCR1 (CJN698), hwp1D/D (CAH7-
1A1E2), als3D/D (CAYF178U), als1D/D (CAYC2YF1U), bcr1D/D+ALS1-OE (CJN1144), and als1D/D+pALS1 (CAYC1). Asterisks indicate statistically
significant decreases in adherence compared to the wild-type strain.
doi:10.1371/journal.ppat.1002525.g001
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expression of two or more broad classes of target genes. For

example, almost all regulators of the newly defined CSTAR genes

also govern expression of HYVIR genes. Second, many groups of

transcription factors have similar effects on their common target

gene classes. For example, Fgr27, Zcf28, Suc1, Try2, Try3, Try4,

and Try5 are all positive regulators of CSTAR and HYVIR genes,

and negative regulators of ZAPT genes. Hence they may function

together in a complex or pathway. Third, some transcription

factors have opposite functions, such as Ada2 and Uga33 or Zfu2

and Zcf34. These relationships would be expected for one

transcription factor that repressed expression of another, or for a

repressor and an activator that recognize similar sequence motifs

in front of target genes. Nine transcription factors (Fcr3, Zcf39,

Zcf8, Zcf31, War1, Not3, Znc1, Taf14, and Czf1) did not have

Table 1. Summary of adherence mutant properties.

Confirmation approaches

orf19a
Candida
Genea

S.c. ortholog/
Best Hit/TF
Classb

Independent
insertion
mutant
Isolates

SN152
Deletionc

BWP17
Deletiond

Comple-
mentation

Mutant
Relative
Adherencee

Mutant+ZAP1-OE
Relative
Adherencee

Significant
Gene
Expression
Changesf

19.6124 ACE2 ACE2 Y Y Y Y 39% filamentous 89

19.2331 ADA2 ADA2 Y N Y Y 20% 35% 138

19.4766 ARG81 ARG81 Y Y Y Y 23% 110% 91

19.723 BCR1 YPL230W Y Y Y Y 27% 23% 155

19.4670 CAS5 MIG2 Y Y N N 24% 32% 88

19.2356 CRZ2 CRZ1 Y Y Y Y 14% 37% 54

19.3127 CZF1 UME6 Y Y N N 21% 51% 68

19.3252 DAL81 DAL81 Y Y N Y 37% 90% 50

19.3193 FCR3 YAP3 Y Y N Y 19% 100% 59

19.6680 FGR27 ASG1 Y Y N N 40% 74% 133

19.4225 LEU3 LEU3 Y Y N N 18% 35% 67

19.5312 MET4 MET4 Y N N N 26% 22% 98

19.2012 NOT3 NOT3 Y N N N 32% 23% 57

19.5871 SNF5 SNF5 Y N Y Y 3% 32% 178

19.7319 SUC1 MAL13 Y Y N Y 48% 93% 53

19.798 TAF14 TAF14 N N N N 15% 20% 80

19.4062 TRY2 CCCH ZF Y N N Y 28% 99% 80

19.1971 TRY3 C3HC4 ZF N N N Y 51% 83% 76

19.5975 TRY4 ADR1 Y Y N Y 41% 35% 93

19.3434 TRY5 YGR067C Y Y N Y 42% 48% 100

19.6824 TRY6 HLH motif Y Y N Y 27% 24% 51

19.7317 UGA33 UGA3 Y Y N Y 25% 95% 122

19.1035 WAR1 WAR1 Y Y N N 24% 20% 16

19.4767 ZCF28 ECM22 Y Y Y Y 23% 111% 64

19.5924 ZCF31 ZN(2)-C6 N Y N N 25% 11% 40

19.6182 ZCF34 PDR1 Y Y N Y 29% 48% 108

19.7583 ZCF39 HAL9 Y Y N N 34% filamentous 88

19.1718 ZCF8 ZN(2)-C6 Y Y N Y 29% 148% 69

19.6781 ZFU2 LYS14 Y Y Y Y 24% 20% 19

19.3187 ZNC1 STB4 Y Y N N 29% 33% 22

Footnotes:
aThese columns list each mutant according to the mutated gene (orf19 numbers and gene names).
bS. cerevisiae orthologs or best hits, or transcription factor classes, are indicated as listed in the Candida Genome Database.
cColumn that indicates whether a deletion transcription factor mutant was available for adherence testing. All deletion mutants were created in the SN152 parent strain
as described in Homann et al. 2009.

dColumn that indicates whether a deletion transcription factor mutant was created and test for adherence. Strains were created in the BWP17 background and
genotypes are in Table S4.

eThese columns list the relative adherence for each mutant strain, and for each mutant strain derivative that carries the ZAP1-OE allele. The complete dataset for
adherence measurements is in Table S1. All of the mutants and ZAP1-OE strains were insertion homozygotes except for ace2, arg81, bcr1, crz2, snf5, and zfu2, which
were deletion homozygotes.

fThis column lists the number of genes that were differentially expressed in each mutant compared to the wild-type control strain DAY185, as indicated by nanoString
profiling. A cutoff p value of 0.05 was applied. Complete data and p values are in Table S2.

doi:10.1371/journal.ppat.1002525.t001
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well defined target gene classes, and their possible relationships to

other adherence regulators were not obvious. However, the

profiling data do identify prospective target genes for all of these

transcription factors (Figure 2A; Table S2) that may direct future

studies. This network visualization suggests that many adherence

regulators have common properties, and that many of these newly

characterized transcription factors may converge to regulate a

limited number of functional target genes or pathways.

Functional relationship between Snf5 and Ace2
Snf5 is a subunit of the eukaryotic SWI/SNF chromatin

remodeling complex [23,24]. Both a snf5D/D deletion mutant and

our original insertion mutant were defective in silicone adherence

(Figure 1, Figure 3A). In addition, snf5 mutants were defective in

biofilm formation (Figure 3A). Confocal microscopic images

showed sparse adherent cells, and mutant biofilms had diminished

biomass. The snf5 mutants also had pleiotropic phenotypic defects,

including increased cell aggregation during yeast form growth, a

severe defect in hyphal morphogenesis, and hypersensitivity to the

cell wall inhibitors Congo Red and caspofungin (Figure 3B).

Complementation of the snf5D/D mutant with a single copy of

SNF5 yielded phenotypes similar to the wild-type strain (Figure 3).

These results indicate that loss of Snf5 function causes a spectrum

of phenotypic defects.

The pleiotropic phenotypes of a snf5D/D mutant may be

mediated by multiple regulatory pathways, in keeping with the

global impact of the SWI/SNF complex on chromatin structure

[25]. A second model, based on our gene expression analysis, is

that many of the snf5D/D defects are the result of reduced ACE2

expression. Although Ace2 is not known to govern cell wall

integrity, it is known to affect adherence, biofilm formation, and

hyphal morphogenesis [15,22]. The second model predicts that

many snf5D/D defects will be reversed by overexpression of ACE2

in the mutant strain. To test that prediction, we fused the TDH3

promoter to the ACE2 coding region in the snf5D/D background,

creating an ACE2-OE allele. Expression of ACE2 was increased to

approximately 3 times the wild type expression level, as indicated

by QRTPCR assays (Figure S2). NanoString profiling confirmed

that the ACE2-OE construct restored RAM gene expression in the

snf5D/D mutant to nearly wild-type levels (preliminary results;

Table S3). Overexpression of ACE2 in the snf5D/D background

restored adherence to wild-type levels (Figure 3A). In addition, it

restored biofilm formation ability in vitro, as assayed by both

biomass and confocal microscopic imaging (Figure 3A). Overex-

pression of ACE2 caused substantial reversal of additional

pleiotropic phenotypes, including yeast cell aggregation, hyphal

morphogenesis, and sensitivity to cell wall inhibitors Congo Red

and caspofungin (Figure 3B). These results indicate that much of

the phenotypic impact of Snf5 stems from its role in ACE2

expression.

To test the significance of our observations to infection, we

turned to biofilm assays in vivo in a catheter infection model

(Figure 3A). The snf5D/D mutant had a severe biofilm defect in

vivo, and this defect was reversed by complementation with one

wild-type copy of SNF5. Overexpression of ACE2 partially restored

biofilm formation in vivo as well. We conclude that ACE2 is a

pivotal Snf5 target gene that mediates multiple phenotypic

properties, including biofilm formation in vitro and in vivo.

Regulation of adherence by Zap1
Profiling data indicated that many adherence- and biofilm-

defective mutants have altered expression of previously known

Zap1-dependent genes (ZAPT genes in Figure 2). In addition,

Zap1 is required along with several adherence regulators for

expression of the newly described CSTAR genes. Given that a

zap1D/D mutant has no detectable adherence defect (Figure 1A),

we considered the hypothesis that Zap1 may act redundantly with

another regulator or pathway to promote adherence. Our

adherence-defective transcription factor mutants would likely

include such a regulator. The hypothesis predicts that overex-

pression of ZAP1 may improve adherence of mutants defective in

the postulated redundant pathway.

To test that prediction, we created derivatives of each

transcription factor mutant that overexpress ZAP1 from the

TDH3 promoter (ZAP1-OE allele). This allele resulted in 2- to 4-

fold overexpression of ZAP1 RNA in several representative

mutants assayed (Figure 4). We confirmed the impact of ZAP1

deletion and overexpression on target gene expression through

QRTPCR assays (Figure 4). This analysis, conducted on three

biological replicates, confirmed that three CSTAR genes were

expressed at lower levels in the zap1D/D mutant than the wild-

type strain (Figure 4). These three genes were also expressed at

reduced levels in three adherence-defective mutants (zcf28D/D,

try22/2, and try32/2), compared to the wild type. Importantly,

expression of the three CSTAR genes increased when the ZAP1-

OE allele was introduced into the mutants (Figure 4). These

conclusions were extended with single nanoString determinations

for several strains that were chosen on the basis of their adherence

phenotypes presented below (preliminary results; Table S3). The

ZAP1-OE construct increased CSTAR gene expression consider-

ably in arg81D/D, zcf282/2, uga332/2, and try22/2 back-

grounds (Table S3). In contrast, the ZAP1-OE construct had no

effect on CSTAR gene expression in the zcf342/2 background.

These observations suggest that ZAP1 overexpression can

stimulate CSTAR gene expression in some, but not all,

adherence-defective mutants. We then compared adherence of

each of the 30 mutant strains with and without the ZAP1-OE allele

(Figure 5, Table 1). For ten mutants, the ZAP1-OE allele caused

significantly increased adherence to a level comparable to the

wild-type strain. This group included the arg81D/D, zcf282/2,

Figure 2. Gene expression profiles of adherence mutants. Panel A. Hierarchical clustering of gene expression data. NanoString expression
data (Table S2) were analyzed as described in Methods. Briefly, averages of three independent determinations for each mutant strain were divided by
averages of six independent determinations of the reference wild-type strain DAY185 to obtain the fold change values for each of 293 genes. All
mutant strains were insertion homozygotes except for ace2, arg81, crz2, zap1, and zfu2, which were deletion homozygotes. Transcription factor
mutants with adherence defects are indicated with underlined gene names; the remaining mutants were controls included for comparison. Color
scale limits were set at (22.0, 0.0, 2.0), so that the brightest yellow represents 4 fold up-regulation compared to wild-type, and the brightest blue
represents 4 fold down-regulation. We define the clusters by representative genes. HYVIR: over 50% of the genes in this cluster are known to play
roles in hyphal growth or virulence. RAM: top targets of Ace2 (Regulation of Ace2 and polarized morphogenesis), which are also regulated by Cbk1,
Snf5, Cas5, Bcr1, and Met4. ZAPT: known Zap1 targets. CSTAR: Cell surface targets of adherence regulators. Additional small clusters of co-regulated
genes did not have unifying functional or structural features. Panel B. Summary of regulatory relationships among the 30 adherence regulators, Zap1,
and the four clusters of target genes defined in panel 2A. Black circles: target gene clusters. Yellow circles: transcription factors. Yellow circles with
black border: adherence regulators whose defects in adherence can be rescued by ZAP1 overexpression. Blue lines: negative regulation for at least 2/
3 of the target genes in the cluster. Orange lines: positive regulation for at least 2/3 of the target genes in the cluster.
doi:10.1371/journal.ppat.1002525.g002
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uga332/2, and try22/2 mutants, in which ZAP1-OE caused

increased CSTAR expression. The strains in which ZAP1-OE did

not improve adherence included the zcf342/2 mutant, in which

ZAP1-OE did not cause increased CSTAR gene expression. These

findings argue that elevated expression of Zap1-dependent genes

can alleviate the need for many transcription factors in promoting

adherence.

Discussion

Adherence of C. albicans to a silicone substrate is critical for

biofilm formation on implanted catheters, the basis for a major

class of device-associated infections. Here we have viewed C.

albicans adherence from the perspective of its transcriptional

circuitry, using of a combination of mutant identification, gene

expression profiling, and overexpression-rescue approaches. Our

findings extend the detailed understanding of Bcr1 and Ace2, two

transcription factors with previously described roles in biofilm

formation (Figure 6). Our findings also have significant implica-

tions on a more global scale: they define a regulatory network

through which twelve transcription factors govern expression of

more than one quarter of the C. albicans cell surface protein genes

(Figure 6). Among the twelve transcription factors is zinc response

regulator Zap1, which also governs biofilm matrix accumulation

and quorum sensing molecule production [20,26]. Zap1 is thus

positioned to coordinate multiple steps in biofilm formation.

Finally, many adherence regulators do not have clear functional

targets (Figure 6), based on our analysis. However, their unifying

target gene classes (Figure 2B) will help to direct future studies.

Cellular and regulatory functions of Bcr1
Bcr1 is among the best characterized biofilm regulators [1].

Previous studies indicated that its adhesin targets Als1/3 and

Hwp1 mediate cell-cell interaction in biofilms [27]. Our findings

Figure 4. Expression of ZAP1 and novel Zap1 dependent genes. Strains were grown in Spider medium for 8 hr at 37uC and QRTPCR assays
were used to determine RNA levels for of ZAP1, ORF19.4652, PGA39 and QDR1. RNA levels were normalized to control TDH3 RNA and then expressed
as relative units compared to each RNA in the wild-type strain. Strains included wild type (DAY185), zap1D/D (CJN1201), zcf28D/D (JF144), zcf28D/
D+ZAP1-OE (JFY261), try22/2 (EHY97), try2D/D+ZAP1-OE (JFY337), try32/2 (EHY30), and try32/2+ZAP1-OE (JFY251).
doi:10.1371/journal.ppat.1002525.g004

Figure 3. Functional relationship between Snf5 and Ace2. Strains indicated at the top of each column include SNF5/SNF5 (DAY185), snf5D/D
(DHY02), snf5D/D+pSNF5 (DHY8), and snf5D/D+ACE2-OE (DHY20). Panel A. Adherence and biofilm formation assays. Each strain was assayed for
adherence, biofilm formation in vitro (48 hr biomass measurements and 24 hr confocal imaging assays), and 24 hr biofilm formation in vivo (catheter
lumen surfaces imaged via scanning electron microscopy at 506or 10006magnification as indicated). Panel B. Pleiotropic phenotypic assays. Yeast
cells were visualized to assess aggregation after 8 hr growth (mid-exponential phase) in YPD at 30uC. Hypha formation visualized after 4 hr of growth
in Spider medium at 37uC. Cell wall inhibitor sensitivity was measured by spot dilution assays: overnight cultures were serially diluted five-fold from
left to right and assayed for growth on YPD, YPD+200 mg/ml Congo Red and YPD+62.5 mg/ml caspofungin after 48 hours at 30uC.
doi:10.1371/journal.ppat.1002525.g003
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Figure 5. Restoration of adherence by increased ZAP1 expression. Adherence of mutant strains, without the ZAP1-OE allele (blue) or with the
ZAP1-OE allele (red), is indicated relative to the wild-type reference strain DAY185.
doi:10.1371/journal.ppat.1002525.g005

Figure 6. Portrait of C. albicans adherence regulators. Our main findings are summarized with transcription factors (blue boxes) connected to
cell surface genes (green boxes) and the target process of adherence. Bcr1 promotes adherence through stimulation of ALS1 expression. Snf5
promotes adherence through stimulation of ACE2 expression. Try2, Try3, Try4, Try5, Suc1, Fgr27, Zcf28, and Uga33 are required for adherence and
required for the expression of CSTAR genes. CSTAR gene products include numerous predicted cell wall proteins; we hypothesize that many CSTAR
gene products mediate adherence. Zap1 is also a positive regulator of CSTAR genes, but it is not required for adherence in our assays. Ada2, Met4,
and Try6 are negative regulators of many CSTAR genes. Finally, many transcription factors are required for adherence (Arg81, Cas5, Czf1, Crz2, Dal81,
Fcr3, Leu3, Not3, Taf14, War1, Znc1, Zfu2, Zcf8, Zcf31, Zcf34, Zcf39), and govern expression of one or several classes of genes (summarized in
Figure 2B), but cannot be connected to specific functional targets.
doi:10.1371/journal.ppat.1002525.g006

Portrait of Candida albicans Adherence Regulators

PLoS Pathogens | www.plospathogens.org 9 February 2012 | Volume 8 | Issue 2 | e1002525



extend that view by showing that Bcr1, through Als1, also governs

cell-substrate adherence (Figure 6). Many previously known Bcr1

target genes are induced upon hyphal development [14], but ALS1

is expressed in yeast form cells as well [28]. Although many Bcr1-

dependent genes are hyphal genes, our findings here indicate that

Bcr1 function in yeast form cells is biologically significant.

One striking feature to emerge from nanoString profiling is that

Bcr1 governs expression of many more genes than any other

transcription factor assayed except for chromatin remodeling

factor Snf5 (Table 1). The set of genes assayed for expression was

designed to include known Bcr1-dependent genes, so this result is

not a fair measure of bcr1D/D mutant pleiotropy. However, our

analysis of target gene clusters suggests that Bcr1 may be a

constituent of the RAM network. Bcr1 has impact on hyphal

morphogenesis [12,14], like other RAM network components. In

addition, we have recently found that Bcr1 is required for cell wall

integrity (S. Fanning and A. P. Mitchell, unpublished results), a

further parallel between Bcr1 and the RAM network. The

mechanistic basis for interaction between Bcr1 and the RAM

network is clearly an interesting area for further inquiry.

Roles of Snf5 and Ace2 in biofilm formation
Our screen also revealed that Snf5, which functions in

chromatin remodeling, is required for cell-substrate adherence.

This finding in and of itself is not surprising, given that Snf5 is

expected to govern expression of a multitude of different genes.

What is striking is that such a broad spectrum of snf5D/D mutant

phenotypes was reversed through increased expression of only one

Snf5-dependent gene, ACE2 (Figure 6). The relationship between

Snf5 and Ace2 is clearly more intimate than previously

appreciated, and an area that seems promising for more detailed

mechanistic analysis.

Our analysis of the Snf5-Ace2 relationship suggests that a

second transcription factor may be partially redundant with Ace2.

Our logic is as follows. The snf5D/D mutant is hypersensitive to

cell wall inhibitors, and overexpression of ACE2 in the snf5D/D
mutant reverses this hypersensitivity. This observation suggests

that Ace2 promotes expression of genes that fortify the cell wall.

Given that the ace2D/D mutant is not hypersensitive to cell wall

inhibitors, then some other transcription factor may activate those

genes in the absence of Ace2. Functional redundancy of Ace2 is

consistent with a recent synthetic interaction study of the RAM

network role in hyphal formation [29]. It is possible that Bcr1 is

the Ace2-redundant transcription factor, because they share

several target genes. In addition, overexpression of BCR1 in the

snf5D/D background relieves the mutant’s caspofungin hypersen-

sitivity (unpublished results). A second candidate is Cas5, a known

regulator of cell wall integrity [30]. Our profiling data reveal that

Cas5, like Bcr1, controls many RAM pathway genes. A third

candidate is transcription factor Sko1, which is down-regulated in

the snf5D/D mutant but not in the ace2D/D mutant (Table S2).

Sko1 functions in C. albicans cell wall integrity [31]. Our profiling

data provide only a small slice of what could be found through

genome-wide analysis. However, the fact that our probe set focuses

on known genes and pathways means that the results can be used

efficiently to generate plausible hypotheses, as illustrated above.

CSTAR cell surface network
Our results define a connection between 11 transcription factors

that govern adherence, the zinc-response regulator Zap1, and 48

target genes that we refer to as CSTAR genes (Figure 2A). Among

the CSTAR genes, 37 encode predicted surface or secreted

proteins. Many of the predicted CSTAR products resemble

adhesins, and three of them, Hwp2, Pbr1, and Pga10, have been

shown to promote biofilm formation [32,33]. A simple hypothesis

is that one or several CSTAR gene products promote cell-

substrate adherence (Figure 6).

Several preliminary results support a relationship between

CSTAR gene products and adherence. One set of observations

comes from nanoString profiling of ZAP1-overexpressing strains

(see Table S3). In the arg81D/D, try22/2, uga332/2, and

zcf282/2 backgrounds, ZAP1 overexpression causes almost all

CSTAR genes to reach or exceed their wild-type expression levels.

In these strains, ZAP1 overexpression rescues the adherence defect.

Thus an increase in overall CSTAR gene expression levels

correlates with increased adherence in these strains. In addition,

we have found that most CSTAR genes are down-regulated in

farnesol-treated biofilms (S. Ganguly, W. Xu, and A. P. Mitchell,

unpublished results), a condition that promotes biofilm detach-

ment [34]. Although these observations are preliminary, they are

consistent with the model that one or several CSTAR gene

products have a positive role in adherence.

Functional analysis of some CSTAR gene products suggests that

their functions may be redundant [32,33]. Specifically, deletions of

CSTAR genes HWP2, PBR1, and PGA10 cause only partial defects

in adherence or biofilm formation [32,33]. These findings imply

that other gene products can compensate for absence of these

three CSTAR genes to promote adherence [32,33]. The analysis

of Hwp2 indicates that it may have overlapping functions with

Hwp1 and Rbt1 in promoting both mating and biofilm formation

[32,33]. We note that Hwp1 and Rbt1 are both hyphal genes and

lie in our HYVIR cluster. Almost all adherence-defective

transcription factor mutants with reduced CSTAR gene expres-

sion also have reduced HYVIR gene expression (see Figure 2B).

An interesting possibility is that several CSTAR and HYVIR gene

products make similar functional contributions to adherence.

Although we have considered the CSTAR genes as a single

group, there are of course features that distinguish group

members. For example, some CSTAR gene products are secreted

(Sap1, Sap2, Sap3); some belong to protein families (Hyr3, Iff3,

Iff4 [35]); some are transporters (Hgt12, Qdr1). In addition, some

CSTAR genes are targets of only a subset of regulators: PGA26

responds weakly to Zap1 and Zcf28; IFF4 responds weakly to

Suc1; PGA46 and CSA2 respond weakly to Met4 and Try6. These

distinctions in regulation may reflect differences in transcription

factor interactions or specificity, or perhaps overlapping regulatory

networks that have compensatory effects. For example, Hap43

governs expression of 7 CSTAR genes [36–38], so Hap43 activity

may influence the phenotypes of some CSTAR regulatory

mutants. Similarly, the detailed spectrum of CSTAR expression

alterations in any one adherence-defective mutant may affect its

phenotype. We do not view the global analysis presented here as a

substitute for more detailed analysis. Rather, this global portrait

provides a basis for focusing detailed analysis, and a context in

which to interpret it.

Zap1 function and biofilm formation
Prior studies have shown that C. albicans Zap1 governs late

events in biofilm formation, including production of extracellular

matrix and quorum sensing molecules [20,26]. Zap1 is required

for efficient hypha formation under several conditions [12,39],

which is required for biofilm formation [1,13]. Although the

zap1D/D mutant has no adherence defect under our assay

conditions, Zap1 is tied to adherence because its modest

overexpression, in the range of 2- to 4-fold, restores adherence

of 10 transcription factor mutants to a level comparable to the

wild-type strain. We believe that this role is mediated through

Zap1 control of CSTAR gene expression (Figure 6). The lack of an
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adherence defect for the zap1D/D mutant may reflect its ability to

express some critical CSTAR genes, perhaps PGA26 for example,

or its ability to express potentially redundant HYVIR genes, as

discussed above.

Both CSTAR genes and previously described Zap1 target

(ZAPT) genes respond to mutations in many of the newly described

adherence regulators. Surprisingly, these two sets of Zap1-

dependent genes are not regulated in parallel. For example, the

ace2D/D, bcr1D/D, and zcf342/2 strains have altered direct ZAPT

gene expression but do not display altered CSTAR gene expression.

Conversely, the fgr272/2, try32/2, try42/2, try52/2,

and uga332/2 strains have reduced expression of many CSTAR

genes, but have either no change or an increase in ZAPT gene

expression. We cannot identify prospective Zap1 binding sites [20]

in the 59 regions of CSTAR genes, so they are probably regulated

indirectly by Zap1. For example, Try4 or Try5 may be the direct

activators of CSTAR genes; Try4/5 expression or activity may be

stimulated by Zap1.

Zap1 target genes have been defined previously through

microarray and ChIP-chip analyses [20]. However, CSTAR

genes were not identified in that study. The previous analysis

employed mature biofilm RNA, whereas here we have used

planktonic RNA. However, we have verified that CSTAR genes

are Zap1-dependent in mature biofilms as well (unpublished

results). We believe that our detection of CSTAR gene expression

differences reflects the fact that nanoString technology is much

more sensitive than microarrays [11], and the CSTAR genes are

expressed at low levels (roughly 1% of the level of HWP1; see

Table S2). The identification of this novel class of target genes

illustrates the well-known value of applying new technology to a

scientific question.

Adherence regulators and biofilm formation
Although we have identified numerous new adherence

regulators, fairly few are required for biofilm formation in vitro.

However, our preliminary results suggest that the assay is relevant

to biofilm formation in vivo. Mutations in ZFU2, CRZ2, and

ZCF28 cause no biofilm defect in vitro, but block biofilm

formation in the in vivo catheter model (unpublished results). It

has not been feasible as of yet to test all 30 adherence defective

mutants in vivo, but these results point to the validity of this

approach to define genes relevant to infection.

Materials and Methods

Ethics statement
All procedures were approved by the Institutional Animal Care

and Use Committee (IACUC) at the University of Wisconsin

according to the guidelines of the Animal Welfare Act, The

Institute of Laboratory Animal Resources Guide for the Care and

Use of Laboratory Animals, and Public Health Service Policy.

Strains and media
Strains were grown in yeast extract-peptone-dextrose (YPD)

rich medium, Spider medium (1% nutrient broth (BD Difco), 1%

D-mannitol (sigma), 0.2% K2HPO4 (Sigma)), or defined synthetic

dextrose medium, prepared as previously described [26,31,40].

Unique strains used in this study are listed in Table S4. Insertion

mutants were created as previously described [41]. The 197 UAU

his- strains used in the initial adherence screen, as well as the

transcription factor deletion mutants [12], are not listed here and are

available at http://www.fgsc.net/candida/FGSCcandidaresources.

htm. Deletion strains created in this study were made in the BWP17

background using PCR product-directed gene deletion as previously

described [42]. Complementation of mutant strains was done as

previously described [21]. Briefly, to complement a specific

mutation, a fragment of DNA from ,1000 bp upstream to

,300 bp downstream of an open reading frame was amplified

from BWP17 genomic DNA. Primers contained a 40 bp sequence

added to the 59 end to allow in vivo recombination into plasmid

pSG1. The plasmid pSG1 was derived by replacing the URA3-f1-

lacZ sequence from the vector pRS416 with the C. albicans HIS1

including a NruI restriction site [43]. The amplified PCR fragment

and NotI linearized pSG1 was co-transformed into S. cerevisiae strain

AMP271 with the resulting plasmid amplified in E. coli. The

complementation plasmid was then digested with NruI and

transformed into the respective mutant strain to target insertion to

the HIS1 locus. All complementation was confirmed by QRT-PCR

as previously described [21]. Primers used to create the deletions and

the complemented strains are listed in Table S5.

Creation of EHY strains were accomplished by standard C.

albicans transformation protocols [44]. The specific CJN, FJS, DSY

and SFY strains were transformed with NruI digested plasmid

pDDB78 [45], and selected on synthetic dextrose medium lacking

histidine. Isolates were streaked for singles and 3 independent

HIS+ UAU insertion isolates were confirmed by PCR.

Overexpression of ZAP1 in the 30 adherence defective mutants

was accomplished by replacing the endogenous ZAP1 promoter (at

one allele) with the promoter of TDH3 as described previously

[20]. For ZAP1 overexpression, primers pTDH3 ZAP1 FOR, and

pTDH3 ZAP1 REV, were used to amplify the THD3 promoter,

with the resulting PCR product being used for recombination into

ZAP1 promoter.

For complementation of mutant strains, PCR primers were

designed to amplify genomic DNA of strain SC5314 from 1 kb

upstream to 0.5 kb downstream of the open reading frame of a

specific gene. Shorter distances were used when there were

additional genes located within this region. The resulting PCR

product was cotransformed into S. cerevisiae with EcoRI and NotI

digested plasmid pDDB78. Plasmid DNA was isolated, trans-

formed into E. coli, and isolated plasmid DNA was digested with

NruI and transformed into the respective C. albicans mutant strains.

Presence of the relevant insertion mutation was verified by

genomic PCR using internal and flanking primers.

New gene names were assigned as follows. The S. cerevisiae

ortholog of orf19.5871 is ScSNF5, so we use the name SNF5 for

orf19.5871. Other previously unnamed genes are designated TRY

genes (Transcriptional Regulators of Yeast cell adherence); we

refer to orf19.4062 as TRY2, orf19.1971 as TRY3, orf19.5975 as

TRY4, orf19.3434 as TRY5, and orf19.6824 as TRY6. We had

initially referred to orf19.6781 as TRY1, but the name ZFU2 was

posted at the Candida Genome Database during the course of our

studies.

Cell wall sensitivity assays
Strains were tested for drug sensitivity as described previously

[30]. Briefly, overnight cultures in YPD were diluted to an OD600

of 3.0 and serially diluted five-fold and spotted onto YPD, YPD

plus 62.5 mg/ml of caspofungin, and YPD plus 200 mg/ml Congo

red plates. Plates were incubated at 30uC for 24–48 hours.

Yeast and hyphal growth assays
Yeast cell morphology was assayed as previously described [40].

Briefly, overnight cultures grown at 30uC in liquid YPD were

diluted to an OD600 of 0.2 with fresh YPD medium and were

grown at 30uC to an OD600 of ,0.8. Cells were visualized using a

Zeiss Axio Observer Z.1 microscope with a 206NA 1.4 objective.

Digital photographs were acquired on a Coolsnap HQ2 (Photo-
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metrics) camera using Axiovision (Zeiss) software. For hyphal

growth assay, overnight cultures grown at 30uC in liquid YPD

were diluted to an OD600 of 0.08 in Spider medium. Cultures were

agitated at 220-rpm at 37uC for 180 minutes. The samples were

then washed with phosphate-buffered saline (PBS), and incubated

for ten minutes in PBS+0.125 mg/ml calcofluor white (Sigma)

[46]. Cells were visualized as described above but with a 636
objective. ImageJ was used to process the images.

In vitro biofilm assays
Biofilm formation assays were performed as previously de-

scribed [14]. Briefly, overnight cultures grown at 30uC in liquid

YPD were diluted to OD600 of 0.5 in 2 ml of Spider medium, and

incubated with silicone squares coated with fetal bovine serum.

After 90 min incubation at 37uC with 70-rpm agitation, the

silicone squares were washed with 2 ml PBS to remove any

unadhered cells, and 2 ml of fresh Spider medium were added.

After 48 hr incubation at 37uC with 70-rpm agitation the silicone

squares were photographed and analyzed for biofilm growth.

Biofilm dry masses were performed as previously described [40].

Briefly, biofilms were grown on silicone squares for 48 hours.

Silicone squares were vortexed in ddH2O to completely detach the

cells from the silicone surface. The cells were collected under

suction on pre-weighed 0.45 mm nitrocellulose filters (Millipore).

After four days of drying the filters were weighed. For each strain

the measurement was in triplicate.

In vitro biofilm visualization by confocal microscopy
Biofilms were grown as described above, except that the

incubation period was 24 hours. After 24 hours growth, biofilms

were gently washed with 2 ml of 16 PBS. The biofilm was then

incubated in 2 ml of 16 PBS with Calcofluor stain at a final

concentration of 0.125 mg/ml for 10 minutes at 37uC with

agitation at 70-rpm [46]. A 60 mm dish (Fisher) was punched

with a 17617 mm square hole and a No. 1 glass coverslip was

fused to the bottom of the dish with UV-curing cement (Norland

NOA-61) to form a shallow well. Double-sided tape was attached

to the interior glass bottom of the well, to act as a spacer

preventing contact of the inverted biofilm to the bottom of the

dish. Once the dish was completed, 300 ml PBS+calcofluor

solution was added to the well. The biofilm was then carefully

removed and inverted, and gently placed onto the double sided

tape. After the biofilm was inverted and affixed to the coverslip,

7 ml of PBS/calcofluor solution was added to the dish. The

biofilm was then imaged with a Zeiss LSM 510 Meta/DuoScan

inverted spectral confocal microscope using a 406 water

immersion 1.2 NA objective with the laser line at 405 nm. The

Zen 2009 software was used to obtain the desired Z stack images.

Image J (http://rsbweb.nih.gov/ij/) was used to create the side

view image and apical view.

In vivo biofilm model
A rat central-venous-catheter infection model was used to assay

in vivo biofilms, as previously described [47]. Briefly, after

24 hours of C. albicans infection catheters are removed from the

rat and the distal 2 cm of catheter material is removed and assayed

for biofilm growth via imaging using scanning electron microscopy

(SEM) [48].

Yeast cell adherence assay
Adherence assays were conducted with Fluxion BioFlux 200, a

flow apparatus with micron scale fluidic channels that allows

visualization of adherent cells with controlled flow rates. The flow

chamber consists of a glass coverslip plasma fused to the fluidic

channel constructed out of polydimethylsiloxane. C. albicans cells

bind to the polydimethylsiloxane but not to the glass.

Strains of interest were grown overnight in YPD at 30uC, and

agitated at 220-rpm. The strains were diluted to an OD600 of 0.2

in YPD medium. 500 ml of sample was added to each lane and

each sample was run in duplicate. For each plate a reference strain

was run, which later was used for fold comparison to the mutant.

For the his- strains the reference strain was DAY286, for EHY

HIS+ strains the reference strain was DAY185, and for the

Homann collection the reference strain was SN250 [12]. After

loading, a flow rate of 3 dyn/cm3 was applied for 30 minutes at

30uC. After 30 minutes of flow each lane had two images taken at

different sites along the channel. Images were always taken at the

same location in each channel for each sample. Strains with

filamentous or clumping cells were not assayable. For each image

the number of yeast cells adhering to the channel was tabulated.

Since two pictures were taken per lane the sum of each lane was

used as a single determinate and each strain thus had two trials.

The average was taken for each strain and the fold change

calculated (number of yeast cells adhered in the mutant strain/

number of yeast cells adhered in the reference strain). Error bars

were calculated by standard deviation, p-values were calculated by

t-test. For strains that had significant changes in adherence, a

second isolate of the strain was assayed to confirm the initial

results.

Quantitative RTPCR
10 mg of isolated RNA was DNase treated (Ambion), and

AffinityScript multiple temperature cDNA synthesis kit (Strata-

gene) was used for first-strand cDNA synthesis. A control reaction

lacking the reverse transcriptase was performed to ensure absence

of DNA contamination. Quantification was performed for gene

amplification for the gene of interest and the reference, TDH3. All

data was normalized to TDH3. Primers used for PCR amplifica-

tion are listed in Table S5. QRTPCR reactions were prepared and

performed on a Biorad iQ5 as previously described [21].

NanoString probe choice
One key issue with nanoString determination is to choose

informative genes for expression measurements. We have chosen

300 genes for assays, based on four considerations. First, we

included probes for ,150 known or predicted cell wall genes,

including 113 genes with potential GPI lipid modification sites

identified by an earlier study [19]. Second, we included probes for

,50 genes known to play a role in host-pathogen interactions,

such as the ALS and SAP gene families. Third, based on previous

genome wide expression studies [30,41], we included probes for

,100 genes that are highly regulated during hypha development

or biofilm formation, during cell wall stress, and in osmotic or

oxidative stress conditions. Fourth, we included control genes for

high, moderate and low expression classes. We chose two genes of

each class that vary little in numerous microarray studies from our

lab as internal controls. They are ACT1, TDH3 (high), ARP3,

orf19.5917.3 (moderate), orf19.7235, PTC1 (low). The list of genes

and their orf19 numbers are shown in Table S2.

NanoString sample preparation and data collection
Cells from overnight YPD cultures were inoculated into 50 ml

Spider medium at OD 0.2, and were grown for 8 hours at 37uC
with 220-rpm agitation before harvesting. Cells were collected by

filtering through 0.45 um nitrocellulose filters (Millipore). Half of

each culture (25 ml) was collected on one filter paper and let dry at

room temp for dry weight measurements, the other half was
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collected on a separate filter and immediately frozen at 280uC for

RNA extraction. Total RNA was extracted using the Qiagen

RNeasy Plant kit (Cat #74904). 80 ng of total RNA was mixed

with the nanoString probe set and incubated at 65uC overnight

(12–18 hours). The reaction mix was then loaded on the

nanoString nCounter Prep Station for binding and washing, using

the default program. The resultant cartridge was then transferred

to the nanoString nCounter digital analyzer for scanning and data

collection. A total of 600 fields were captured per sample. Three

independent samples were prepared and processed for each

mutant (six samples for the wildtype control strain DAY185). We

performed nanoString analysis on 30 transcription factor mutants

with reduced yeast form adherence, 2 transcription factor mutant

strains (tec1, zap1) that have wild-type levels of adherence, and 3

protein kinase mutant strains that are known to have severe defects

in cell wall integrity and biofilm formation (ire1, gin4 and cbk1) [21].

All 35 mutants are listed in Table S2.

NanoString data analysis
The raw data, in a form of digital counts for each of the 300

genes in every sample, were first adjusted for binding efficiency

and background subtraction using the manufacturer included

positive and negative controls, following nCounter data analysis

guidelines. Second, mutant strain data sets were normalized to the

control wildtype strain DAY185 using three groups of control

genes: ACT1, TDH3 (high), ARP3, orf19.5917.3 (moderate),

orf19.7235, PTC1 (low). Normalization factors were calculated

for each group, and the average of the three was used to normalize

the whole data set. We noticed that the normalization factors

calculated for the three groups (high, moderate and low) were very

consistent, usually within 10% difference. The normalized data

sets for 35 mutants, each containing expression data for 293 genes,

were shown in Table S2 and were further analyzed (we took out

the 6 control genes, and OSM1, which is the same as ALS4. OSM1

was annotated as a separate gene adjacent to ALS4, but was later

corrected as a part of the ALS4 gene. Our readings on OSM1 and

ALS4 were almost identical in all mutants and wildtype).

We used MultiExperimentViewer (MeV v4.6.2) to cluster the

data sets. The normalized data sets were used to determine if the

expression level of a gene in a mutant was significantly different

from that in the wild-type control by two-tailed Student t-test. For

ones that are significantly different (P,0.05), the average of three

determinations for a gene in a mutant was divided by the average

of six determinations for the respective gene in the wild-type

control to calculate the fold change. For ones that are not

significantly different (P.0.05), we set the fold change as 1, so that

they would not affect clustering analysis. The data (fold changes

comparing to wildtype) were log2 transformed, and hierarchical

clustered by averaging linkage clustering based on Manhattan

Distance, and optimized for gene leaf order. Color scale limits

were set at ‘‘22.0, 0.0, 2.0’’, meaning that the brightest yellow

represents 4 fold upregulation comparing to wild-type, the

brightest blue represents 4 fold downregulation, and black

represents no change (or the change is not considered significant

by t-test). We also performed the same clustering analysis using the

original normalized data sets (i.e. without using the t-test to

eliminate ones with p-value .0.05). The resultant clusters were

very similar to what we obtained using the p-value adjusted data

sets. The clustering diagram shown in figure 2A is from the

original data sets.

Supporting Information

Figure S1 Biofilm formation assays of ARG81/ARG81, arg81D/

D, and arg81D/D+pARG81 strains. Biofilm formation was assayed

in vitro for 48 hr.

(PPT)

Figure S2 RNA Levels of SNF5 and ACE2 in strains SNF5/

SNF5, snf5D/D, snf5D/D+pSNF5, and snf5D/D+ACE2-OE strains.

RNA levels were measured by QRTPCR and normalized to

control TDH3 RNA levels.

(PPT)

Table S1 Complete adherence measurements for mutant and

complemented strains. Adherence determinations were made with

a Fluxion flow cell, and are listed as mean and standard deviation.

(XLS)

Table S2 NanoString expression data for mutant strains.

NanoString measurements of reporter gene expression are

provided as raw numbers for individual assays, as well as means

and standard deviations.

(XLS)

Table S3 NanoString expression data for ACE2-OE and ZAP1-

OE strains. NanoString measurements of reporter gene expression

are provided as raw numbers for individual assays, as well as

means and standard deviations.

(XLS)

Table S4 Genotypes of C. albicans strains. Complete genotypes of

C. albicans strains used in this study are listed.

(DOC)

Table S5 Oligonucleotide sequences. Sequences of oligonucle-

otides used in this study are indicated, exclusive of nanoString

probes.

(XLSX)
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