
The medically relevant Candida species1 are mainly 
commensal fungi that reside on mucosal surfaces and in 
the gastrointestinal and genitourinary tracts. Although 
these organisms are usually benign, they can cause 
infection if immune function in the host is impaired 
or if an environmental niche becomes available2. Many 
Candida spp. infections arise as a result of the organ-
isms’ ability to grow as a biofilm on implanted medical 
devices3–6. The use of these devices — such as venous 
catheters, urinary catheters and artificial joints — is now 
routine, with more than 10 million recipients per year7. 
Device-associated Candida spp. infections have mortal-
ity rates as high as 30%7,8, and the annual cost of anti-
fungal therapies in the United States alone is estimated 
at US$2.6 billion9. Like the biofilms formed by bacterial 
pathogens, Candida spp. biofilms are resistant to many 
antimicrobial agents, so treatment can require surgical 
removal and later replacement of the infected device5,7. 
Here, we review Candida spp. biofilm development with 
a focus on Candida albicans, the most frequently isolated 
Candida pathogen10.

Candida albicans biofilm development
C. albicans biofilms consist of two main kinds of cells: 
small oval yeast-form cells (also called blastospores) and 
long tubular hyphal cells. C. albicans biofilms grown 
in vitro often have a foundation of yeast cells, from which 
a hyphal layer emanates5 (FIG. 1a). Extracellular matrix 
material is also clearly evident and is bound to both yeast 
and hyphal cells. It is typically interspersed throughout 
the biofilm, although in FIG. 1a it is mainly apparent at 
the top of the sample. Biofilms from in vivo catheter 
infection models seem to be more complex, with yeast 
cells and hyphae being interspersed11 (FIG. 1b). Genetic 
analyses indicate that both yeast cells and hyphae are 

crucial for biofilm formation, which suggests that each 
cell type has a unique role in the process5.

In vitro experiments allow C. albicans biofilm devel-
opment to be viewed as a series of sequential steps5,12 
(FIG. 2). Biofilm formation begins with adherence of yeast 
cells to a substrate (the adherence step; FIG. 2). Soon 
afterwards, the yeast cells proliferate across the sur-
face and produce elongated projections that grow into 
filamentous forms, including hyphae and pseudohyphae  
(the initiation step). Extracellular matrix accumulates 
as the biofilm matures, and high-level drug resistance is 
also acquired (the maturation step). Finally, non-adherent 
yeast cells are released from the biofilm into the sur-
rounding medium (the dispersal step). Although these 
steps might occur concurrently rather than sequentially 
during natural biofilm development in vivo, they provide 
a useful framework with which to guide a mechanistic 
analysis of C. albicans biofilm development.

Simple inferences from biofilm genetics
Recent progress in expression profiling and genetic 
manipulation has increased our understanding of 
the regulatory pathways and mechanisms that govern 
C. albicans biofilm development and biofilm-based drug 
resistance. In addition, such analyses have pointed to an 
intriguing relationship between biofilm formation and 
mating. On the basis of known mutant phenotypes, it 
is clear that C. albicans genes can have net positive or 
negative roles in biofilm development. This distinction 
is useful when thinking about the relationships between 
genes, because a gene product with a negative effect 
can function by inhibiting a gene product with a posi-
tive effect, for example. In addition, it is worth bearing 
in mind that biofilm dispersal involves an unravelling 
of the steps involved in biofilm formation. Therefore, 
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Abstract | Candida species cause frequent infections owing to their ability to form biofilms — 
surface-associated microbial communities — primarily on implanted medical devices. 
Increasingly, mechanistic studies have identified the gene products that participate directly 
in the development of Candida albicans biofilms, as well as the regulatory circuitry and 
networks that control their expression and activity. These studies have uncovered new 
mechanisms and signals that govern C. albicans biofilm development and associated drug 
resistance, thus providing biological insight and therapeutic foresight.
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Quorum sensing
Communication between 
neighbouring cells, carried out 
through secreted signalling 
molecules, allowing 
populations to sense organism 
density and alter gene 
expression accordingly. 

the negative function of yeast-form cell wall protein 1 
(ywp1) in the adherence step that leads to biofilm for-
mation might go hand in hand with a positive function 
in biofilm dispersal, for example.

The genes that govern C. albicans biofilm develop-
ment (TABLE 1) fit into several broad functional catego-
ries. Many of these genes are required for the production 
of hyphae (filamentation). Some of the first C. albicans 
biofilm genetic studies indicated that hyphae are 
required for stable biofilm formation13,14. In addition, 
several biofilm genes are involved in the response to 
the quorum sensing molecule farnesol15,16. Farnesol is an 
inhibitor of filamentation15,16 and, as might be expected, 
it inhibits biofilm formation in vitro17. In fact, sev-
eral quorum sensing molecules accumulate in mature 
biofilms (BOX 1) and the addition of such molecules  
to biofilm cultures in vitro indicates that they can promote 
biofilm dispersal18–20.

Several noteworthy classes of gene products govern 
the properties of C. albicans biofilms, including known 
or predicted cell wall proteins. These proteins are of 
special interest because they might have a direct role in 
cell–substrate or cell–cell adherence. Indeed, heterolo-
gous expression studies indicate that a putative cell wall 
adhesin, enhanced adherence to polystyrene 1 (Eap1), 
as well as hyphal wall protein 1 (Hwp1), agglutinin-like 
sequence 1 (Als1) and Als3 have such roles21–23. Surface 
proteins are of further interest as accessible therapeutic 
targets. Finally, it has become increasingly evident that 
cell heterogeneity is a crucial feature of biofilms24. This 
attribute is obvious from the different cell types that 
are seen in C. albicans biofilms (FIG. 1), and the genes 
that encode fungal cell wall proteins are subject to both 
genetic and epigenetic mechanisms that further contribute 
to cell heterogeneity25,26.

Many of the C. albicans genes involved in biofilm 
development encode predicted transcription factors 
or protein kinases. These regulatory proteins must 

function indirectly to control biofilm properties, but 
can be informative indicators of the internal and exter-
nal signals that influence biofilm development. For 
example, a transcription factor, biofilm and cell wall 
regulator 1 (Bcr1), is required for biofilm formation, 
and its expression is upregulated in hyphae, thus indi-
cating that Bcr1-dependent gene products might be 
the hyphal components that are required for biofilm 
formation27,28. Similarly, the zinc-responsive transcrip-
tion factor Zap1 (also known as Csr1 and Sur1) is a 
regulator of extracellular matrix accumulation, indi-
cating that alterations in zinc levels might alter matrix 
formation29. The signals that influence the activity of 
many of the other biofilm regulators listed in TABLE 1 
are not well understood, which presents an opportunity 
for future study.

Several alcohol dehydrogenases and aryl-alcohol 
dehydrogenases have an impact on biofilm development. 
The fact that both positive and negative roles have been 
found for these proteins indicates that substrate specifi-
city is crucial for their biological function29,30. Although 
it is possible that their substrates and products function 
primarily through effects on intermediary metabolism, 
we note that the aryl-alcohol dehydrogenases in par-
ticular have been implicated in the synthesis of amino 
acid-derived alcohols, which might function in quorum 
sensing19,31,32.

we have assembled a model that connects the steps 
involved in C. albicans biofilm development with bio-
film genes and regulatory pathways (FIG. 2). The regula-
tory relationships shown are based on diverse lines of 
evidence, which include mutant phenotypes, genetic 
epistasis tests, microarray analyses, gene overexpression 
phenotypes and chromatin immunoprecipitation assays. 
Thus, some pathway relationships are indirect or tenta-
tive. The model is intended as a framework for the iden-
tification of new areas of inquiry and for interpretation 
of future studies.

Figure 1 | Candida albicans biofilm structure in vitro and in vivo. a | Scanning electron micrograph (SEM) of an in vitro 
Candida albicans biofilm. The biofilm sample was sliced to show three layers in a cross-sectional view. The basal layer 
primarily includes yeast cells, as is evident in the lower enlarged inset. The central layer is mainly hyphae. The upper layer 
has yeast cells budding from the hyphae. The upper enlarged inset shows the extracellular matrix material, which seems 
fibrous in this preparation. b | SEM of an in vivo C. albicans biofilm from the rat catheter model11. Yeast cells, hyphae and 
some pseudohyphal cells are evident, along with extracellular matrix material. Images courtesy of J. Suhan (Carnegie Mellon 
University, Pittsburgh, Pennsylvania, USA), and J. Nett and D. Andes (University of Wisconsin–Madison, USA). 
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Perhaps the best use of a model for gene function in 
biofilm development is its application to in vivo models 
of biofilm formation on implanted devices11,33–35. In vivo 
models are crucially important because the nature of the 
device surface, the presence of host-derived condition-
ing film, the amounts of oxygen and carbon dioxide, and 
liquid flow all affect biofilm development12,36–38. Thus, it 
is impossible to duplicate in vitro all the conditions that 
are relevant in vivo.

Diversity of biofilm environments and cohabitants
Many studies have focused on the formation of C. albicans 
biofilms on implanted vascular catheters, because this 
is a major source of infection7. However, biofilms can 
also be formed on many other devices. A rat denture 
biofilm model that recapitulates features of denture sto-
matitis has been described recently33. Microscopic and 
microbiological analyses showed the signature features 
of biofilm development: adherent cells, the presence of 
extracellular matrix material, and high-level drug resist-
ance. The biofilms in one other recently described rat 
model, involving subcutaneously implanted catheters, 
also had characteristic matrix material and an abundant 
hyphal population34. This model provides both ethical 
and technical advantages because a single animal can be 
used to culture numerous biofilms.

Biofilms also form on tissue surfaces, including the 
oral and vaginal mucosa. In such infection models, 
C. albicans produces dense three-dimensional biofilms 
that are embedded in extracellular matrix material39,40. 
The level of biofilm drug resistance in these models 
has not been tested directly, although drug resistance is  
seldom a clinical problem with vaginal candidiasis40.

Is biofilm formation in these new environments 
mechanistically distinct from the more commonly stud-
ied in vitro and in vivo models? There are certainly some 
conserved features. For example, biofilm formation in 
most of the models described here depends on the tran-
scription factor Bcr133,34,40. where tested, strains that 
were defective for filamentation were also defective for 
biofilm formation34,40. However, on the basis of results 
from the systematic manipulation of in vitro biofilm 
environments38, and given the pronounced gene expres-
sion responses of C. albicans to distinct host niches41, it is 
likely that distinct genetic requirements and mechanisms 
will emerge for each system.

For any one type of biofilm, the environment can be 
altered by the presence of co-infecting microorganisms. 
The overall frequency of mixed-species biofilm infec-
tions has not been reported, but >20% of bloodstream 
infections involving Candida spp. are polymicro-
bial42. In a recent analysis of 24 cases of endocarditis 

Figure 2 | Proteins that function in biofilm development. In the adherence step, yeast-form cells adhere to the 
substrate. In the initiation step, the cells propagate to form microcolonies, and germ tubes form to yield hyphae. In  
the maturation step, the biofilm biomass expands, the extracellular matrix (green) accumulates and drug resistance 
increases. In the dispersal step, yeast-form cells are released to colonize the surrounding environment. The upper half 
of the diagram depicts several known pathway relationships. The lower half includes proteins that function in a specific 
step, but might not be connected to a known pathway. For simplicity, some known pathway relationships have been 
omitted. Proteins are presented more than once if they have roles in more than one step of biofilm development. 
Dashed T-shaped bars indicate repression by an indirect mechanism. Plus and minus symbols indicate that the upstream 
gene or signal stimulates (+) or inhibits (–) the expression of the downstream target.  See main text for details about 
some of the specific proteins in the model.
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associated with an implanted device, ~25% of the 
infections were found to be polymicrobial43. In bio-
films grown in vitro, the interactions between bacteria 
and C. albicans are diverse44. Symbiotic interactions 
can result in augmented adherence and antibiotic 
resistance45,46. However, most of the known inter-
actions are inhibitory. Among the most intriguing 
examples are those that arise from trans-kingdom 
responses to quorum sensing molecules. For example, 
farnesol produced by fungi inhibits the formation of 
Staphylococcus aureus biofilms and increases the anti-
biotic susceptibility of the bacterium47,48. Bacteria can 
fight back, however; for example, the Pseudomonas  
aeruginosa quorum sensing molecule homoserine lac-
tone mimics farnesol, inhibiting C. albicans filamentation 
and thus preventing the formation of C. albicans bio-
films49. Other inhibitory interactions arise from broader 
environmental manipulations; for example, vaginal  
bacteria inhibit C. albicans growth and virulence by 
producing H2O2 or lactic acid44,50. The importance of 
further study in this area is demonstrated by the fact 
that the presence of combined infection by both bacteria 
and C. albicans can result in increased mortality51,52.

Adherence and attachment responses
The gene products that have been assigned to the adher-
ence step (FIG. 2) have been shown by either null-mutant 
analysis or heterologous-expression studies to affect the 
binding of C. albicans to a plastic or protein-coated sub-
strate. One of the most clearly defined biofilm adhesins 
that mediates surface binding is Eap121,53. Eap1 has 
sequence features that are commonly found in fungal 
cell surface proteins54,55, including a signal sequence and 
an amino acid composition that is rich in the prospec-
tive glycosylation acceptors serine and threonine. The 
protein also contains internal repeats of a peptide motif, 
Trp-Pro-Cys-Leu, that is found in numerous fungal cell 

surface proteins. Finally, it has a short carboxy-terminal 
sequence that directs the attachment of a glycosylphos-
phatidylinositol (GPI) anchor. GPI-linked proteins are 
found in many eukaryotes, in which the GPI moiety 
tethers proteins to the plasma membrane. However, 
C. albicans and many other fungi can cleave this anchor 
and then transfer the cleavage product and attached 
protein to form a covalent linkage with β-glucan in the 
cell wall54,55. Several approaches indicate that Eap1 is 
indeed a GPI-linked cell wall protein53. Three observa-
tions indicate that Eap1 functions directly in biofilm 
adherence: expression of the protein in a non-adherent 
Saccharomyces cerevisiae strain confers adherence to 
polystyrene; a C. albicans eap1–/– deletion mutant has 
reduced adherence to polystyrene; and a C. albicans 
eap1–/– deletion mutant is defective in biofilm forma-
tion, as assayed both in vitro and in an in vivo catheter 
model53,56.

The closely related cell wall proteins Als1 and Als3 
might also function in biofilm surface attachment57. 
Expression of Als1 or Als3 in S. cerevisiae promotes 
binding to several different protein-coated substrates58, 
which may resemble the conditioned surface of an 
implanted device. In addition, a C. albicans mutant 
lacking both ALS1 and ALS3 is defective in biofilm 
formation in vitro and in vivo22. In particular, cath-
eter surfaces inoculated with the double mutant are 
virtually devoid of cells after incubation in vivo22, as 
would be expected if the mutant has a severe substrate 
adherence defect.

The idea that Eap1 and Als1 might function in the 
initial adherence step is consistent with the fact that 
expression of both genes is detectable in cells grown as 
either yeast or hyphal cell types56,59. This is not the case 
for Als3, which is expressed primarily or exclusively in 
hyphae59. It is possible that the initial adherence step that 
leads to biofilm formation in vivo can be carried out by 

Table 1 | Selected genes involved in Candida albicans biofilm development

Molecular function of 
gene products*

role of gene 
product

genes refs

Transcription factors Positive ACE2‡, BCR1, CPH1, CZF1‡, EFG1‡, FLO8‡, GCN4, 
TEC1‡, UME6‡ and NRG1‡

14,27,28,90,98,  
99,118–122

Negative ZAP1 29

Cell wall-related proteins Positive ALS1, ALS2‡, ALS3, ALS4, ALS5, ALS7, ALS9, CSA1, 
EAP1, FKS1, HWP1, HWP2, OCH1, PGA1, PGA10‡, 
PMT1‡, PMT2‡, PMT4, PMT6, RBT1, RBT5 and SUN41‡ 

22,23,28,38,56, 
67,71,73–76,97, 

123–125

Negative YWP1 126

Alcohol dehydrogenases Positive ADH5 127

Negative ADH1, CSH1 and IFD6 29,30

Protein kinases Positive CBK1‡, GIN4‡, IRE1‡, MKC1 and YAK1‡ 64,78,128

Negative CHK1 and TOR1, 129,130

Drug efflux pumps Positive CDR1, CDR2 and MDR1 89

Glucoamylases Positive GCA1 and GCA2 29

Other functions§ Positive CAT2, ECE1, KEM1‡, MDS3‡, NDH51, NUP85‡, PBR1, 
PES1, PDX1, RIX7, SUV3‡, VAM3‡ and VPS1‡

28,68,98,131–136

*Molecular functions have been inferred from protein sequence homology, in most cases. For specific gene product functions and 
details, see main text and Supplementary information S1 (table). ‡Indicates a regulator of filamentation. §Gene product functions 
that do not fit into any of the categories listed here. 
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either yeast-form cells, which express Als1, or hyphae, 
which express Als3.

Adherence itself can activate a gene expression 
response. For example, a microarray comparison of 
planktonic cells and substrate-adherent cells revealed 
that, interestingly, a change in gene expression was 
established as little as 30 minutes after adherence and 
was maintained for hours for several genes60. In addi-
tion, the expression of fusion proteins consisting of GFP 
fused to the drug efflux proteins Cdr1 or Mdr1 was 
upregulated following a few minutes of adherence to a 
glass slide61. Thus, C. albicans can sense and respond to 
surface contact. The regulators that promote attachment 
responses are unknown, but the transmembrane protein 
Dfi1 and the mitogen-activated protein kinases Mkc1 
and Cek1 (also known as Erk1) are mediators of other 
surface-dependent responses62–64 and are, thus, excel-
lent candidates. Mkc1 is required for normal biofilm 
formation64, and it would be interesting if this require-
ment were to reflect an effect on adherence-induced 
gene expression.

Adherence is also highly regulated through a new 
mating factor response pathway (BOX 2). Interestingly, 
this pathway operates in cells that do not mate but 
rather assist in mating through biofilm formation65–68. 
The responsive cells are of mating type a/a and thus  
have the potential to mate with α/α cells. However, they 
are unable to do so, because they have not made the epi-
genetic transition from the white, mating-incompetent 
state to the opaque, mating-competent state69. They 
nonetheless respond to α-factor through a newly evolved 
hybrid signal transduction pathway66 to create a biofilm. 
Four white-cell genes that are induced by α-factor are 
required for full adherence of this biofilm: the genes 
that encode the cell surface proteins Eap1 and the pre-
dicted GPI-anchored protein 10 (Pga10), the predicted 
secreted protein Pbr1 and the putative aryl-alcohol dehy-
drogenase cell surface hydrophobicity 1 (Csh1)68. Csh1 

has been detected on the C. albicans cell surface70, so the 
nature of its role in adherence is uncertain. Most C. albi­
cans isolates are a/α cells and do not secrete or respond 
to mating factor; a/α strains have been used for most 
of the biofilm studies described in this Review. However, 
the fact that Eap1, Pga10 and Csh1 all have roles in bio-
film formation in a/α cells indicates that both kinds of 
C. albicans biofilm might use similar gene products68.

Biofilm initiation and filamentation
The gene products that have been assigned to the initia-
tion step (FIG. 2) have a range of functions. This diver-
sity results, in part, from our broad definition: these are 
genes in which mutations cause the production of only 
a small, rudimentary biofilm in vitro. Overexpression 
of some of the gene products in this group (Rbt5, Als9 
and extent of cell elongation 1 (Ece1)) improves biofilm 
formation in a bcr1–/– mutant, which is defective in bio-
film initiation (see below). we note that a mutant with 
a partial adherence defect might be categorized as an 
initiation mutant; thus, our assignment of gene products 
to this step is tentative.

The production of hyphae is a hallmark of initia-
tion, and many initiation-defective mutants grow solely 
as yeast cells under biofilm conditions (TABLE 1). Bcr1 
expression is upregulated in hyphae, although this  
protein is required for biofilm initiation but not for 
the production of morphologically normal hyphae27,28. 
Rather, it is required for normal production of several 
cell surface proteins, some of which (such as Als3 and 
Hwp1) are induced in hyphae. The failure to express 
these surface proteins is the cause of the biofilm defect 
in the bcr1–/– mutant, because increased expression of 
ALS3 or HWP1 in this mutant restores the ability to form 
biofilms, both in vitro and in vivo23,28 (FIG. 3). Moreover, 
expression of BCR1 or its target genes can even per-
mit biofilm formation by mutants that are defective in 
hyphal morphogenesis: specifically, increased expres-
sion of BCR1 in a hyphal-defective tec1–/– mutant per-
mits in vitro formation of a biofilm, albeit a fragile one28. 
In addition, the expression of a surface-directed Als3 
fusion protein permits biofilm formation in vitro in a 
hyphal-defective enhanced filamentous growth 1 (EFG1) 
deletion mutant71. Therefore, the main way that hyphae 
promote biofilm formation is through expression of their 
surface protein complement.

Interestingly, the Bcr1 orthologue in the biofilm-
forming species Candida parapsilosis is also required 
for biofilm formation in this species72. Because C. parap­
silosis does not form hyphae, the regulatory pathway 
upstream of Bcr1 may be divergent. nonetheless, this 
finding points to the possibility that Bcr1 orthologues in 
other species might also govern biofilm formation.

what do these hyphal surface proteins do? Hyphae 
are extremely ‘sticky’, and both Als3 and Hwp1 are adhes-
ins in some contexts54, so it seems reasonable to assume 
that they might promote cell–cell or cell–substrate bind-
ing. In fact, Als3 (along with the closely related Als1) 
and Hwp1 seem to function as complementary cell–
cell adhesins, analogous to the mating agglutinins of  
S. cerevisiae that promote binding between a-cells and 

 Box 1 | Quorum sensing and Candida albicans biofilms

Quorum sensing phenomena are those in which microbial behaviours or responses are 
governed by cell density. Such community behaviours are usually determined by 
secreted signalling molecules, the accumulation of which is a measure of cell density100. 
Quorum sensing has a pivotal role in biofilms of all kinds101,102. The best studied 
quorum-sensing molecule in Candida albicans is E,E-farnesol, an inhibitor of hyphal 
formation. Exogenous farnesol inhibits biofilm formation if provided early during 
adherence17,18. The limited biofilms that form in the presence of farnesol comprise 
mainly yeast and pseudohyphal cells, rather than hyphae. Farnesol also accumulates in 
supernatants of mature biofilms20, where stimulation of yeast cell production might 
promote biofilm dispersal. Tyrosol, an alcohol derived from tyrosine, has the opposite 
activity to farnesol: it stimulates hyphal formation. The addition of exogenous tyrosol 
does not have a measurable effect on overall biofilm development but can partially 
overcome the inhibition of biofilm formation by exogenous farnesol18. Tyrosol also 
accumulates in mature biofilm supernatants18,20, and the overall inhibition of hyphal 
formation by such supernatants17,18,20 seems to reflect the dominant activity of 
farnesol18. Several other small molecules are detectable in biofilm supernatants, 
including phenylethyl alcohol, dodecanol and nerolidol20. Each of these compounds 
can inhibit hyphal formation, and thus all might aid in biofilm dispersal by promoting 
yeast cell formation. It will be of interest to block the synthesis of, or response to, 
individual molecules in order to assess their biological functions, and to test their roles 
in biofilm development in vivo.
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α-cells. Two main observations support this idea. First, 
both a hwp1–/– mutant and an als1–/–als3–/– double mutant 
are defective in biofilm formation, but a mixture of the 
two mutant strains produces a robust biofilm in vitro and 
in vivo22. This finding indicates that Hwp1, Als1 and Als3 
have distinct and complementary roles in biofilm forma-
tion. Second, expression of HWP1 in S. cerevisiae pro-
motes the adherence of this yeast to hyphae of wild-type 
C. albicans22, but adherence is diminished when tested 
with hyphae of a C. albicans als1–/– als3–/– double mutant. 
These findings point towards a function of Hwp1, Als1 
and Als3 as mediators of cell–cell adherence.

At this juncture, it is possible to propose a minimal 
pathway of biofilm formation. First, yeast cells express 
Eap1 and Als1, which mediate cell–substrate binding. 
Second, surface-bound cells propagate and express Als3 
and Hwp1, which mediate cell–cell binding. Hyphae 
formation might provide a simple pathway that leads to 
Als3 and Hwp1 accumulation. Als3 would also augment 
cell–substrate binding, as discussed above. In addition, it 
has been shown that Eap1 mediates cell–cell binding and 
cell–substrate binding, so this protein would participate 
in both processes. Many of the proteins required for bio-
film initiation are also required for hyphae formation; in 
the minimal model, their functions are explained as ulti-
mately being required for ALS3 and HWP1 expression.

However, the roles of some biofilm initiation proteins 
are less readily explained by the minimal model: the 
additional cell surface proteins, including Sun41, Csa1, 
Pga10, Rbt5, Hwp2 and Rbt1 (TABLE 1). Analysis has 
been challenging for several of these proteins, because 
they belong to families with overlapping or compensa-
tory functions (Csa1, Pga10 and Rbt5; Hwp2, Rbt1 and 
Hwp1; and Sun41 and Sun42)67,73–76. To study the genes 
encoding these proteins, strains with mutations in mul-
tiple genes are required, but the construction of such 

mutants is not trivial. In any case, current observations 
indicate that some of these proteins might function as 
adhesins. In particular, the additive effects of hwp2 or 
rbt1 mutation with a hwp1 mutation, along with the 
known role of Hwp1 as an adhesin, indicate that Hwp2 
and Rbt1 are adhesins67. For example, they might con-
tribute to a threshold level of cell–cell binding that is 
required for biofilm stability. In C. parapsilosis, the Bcr1 
homologue promotes the expression of RBT1, so per-
haps C. parapsilosis Rbt1, which has an important role 
in biofilm formation72,77, has assumed a predominant 
adhesin function in this species. A second suggestion 
is that some of these cell surface proteins have general 
roles in cell wall structure, and that perturbation of the 
cell wall architecture impairs adherence through effects 
on either post-translational modification or the expres-
sion of adhesins. It should be noted that loss of Sun41 or 
Pga10 confers hypersensitivity to cell wall inhibitors, an 
expected consequence of a general cell wall defect73–76. 
It is also noteworthy that the amounts of ALS1 RnA are 
reduced in the biofilm- and cell wall-defective protein 
kinase mutants gin4–/–, ire1–/– and cbk1–/–, thus indicat-
ing that adhesin gene expression might be regulated 
through cell wall regulatory pathways78. The mechanistic 
contribution of so many cell surface proteins to biofilm 
formation is a key aspect to be addressed, particularly 
because such proteins are inviting therapeutic targets.

Biofilm maturation and the extracellular matrix
Biofilm maturation includes continued growth of the bio-
film and the accumulation of extracellular matrix material. 
Genes assigned to this category (FIG. 2) include those that 
affect matrix production or overall biofilm biomass.

The composition of the matrix that is produced 
in vitro includes carbohydrate, protein, hexosamine, 
phosphorus and uronic acid79. One main extracellular 
carbohydrate constituent is β-1,3 glucan, increased pro-
duction of which is associated with biofilm cells rather 
than planktonic cells80. A proteomic analysis showed 
the presence of specific proteins associated with the 
biofilm cell surface; these proteins may include matrix 
components30,81. Finally, a recent study reported the 
detection of extracellular DnA82, as has been found in 
bacterial biofilms83. Indeed, the addition of Dnase to 
a mature biofilm partially disrupts the biofilm79,82, and 
the addition of extracellular DnA at the beginning of 
biofilm development results in mature biofilms with 
increased biofilm biomass. Thus, extracellular DnA in 
the matrix contributes to the structure and stability of 
a mature biofilm.

The transcription factor Zap1, a regulator of zinc 
acquisition84,85, is a net negative regulator of biofilm 
matrix production (FIG. 2). A zap1–/– mutant forms a 
biofilm with elevated levels of matrix β-1,3 glucan 
in vitro and in vivo29. Zap1 activates the expression of 
CSH1 and IFD6, which have inferred negative roles in 
matrix production, and represses the expression of the 
glucoamylase 1 gene (GCA1), GCA2 and the alcohol 
dehydrogenase 5 gene (ADH5), which have inferred 
positive roles29. Gca1 and Gca2 might function through 
the hydrolytic release of soluble β-1,3 glucan fragments 

 Box 2 | Candida albicans mating

One of the most exciting discoveries in Candida albicans research in recent years is  
the finding that this organism, which was long considered to be asexual, can mate.  
A mating-type locus called MTL determines sexual identity through regulatory 
relationships with some similarity to those of Saccharomyces cerevisiae: MTLa/MTLa 
cells can mate with MTLα/MTLα cells, and MTLa/MTLα cells cannot mate103. The mating 
response is induced by secreted mating pheromones: MTLa/MTLa cells secrete a-factor, 
and MTLα/MTLα cells secrete α-factor104. However, mating involves more than just 
MTL-specified sexual identity; cells must switch from the mating-incompetent white cell 
type to the mating-competent opaque cell type105–109. The epigenetic white–opaque 
switch responds to numerous genetic and environmental signals, but it does not seem  
to be regulated by mating factors110,111.

Mating of two C. albicans diploid cells yields a tetraploid that breaks down through 
chromosome loss to yield recombinant diploid progeny112–115. Normal functioning of 
the chromosome loss pathway depends on Spo11116, orthologues of which function  
in meiosis in other organisms, but there is no evidence that C. albicans has a complete 
meiotic pathway.

Although white cells do not mate, they do respond to mating pheromones. The 
response can be assayed through changes in gene expression and increases in cell–cell 
and cell–substrate adherence, which stimulate biofilm formation65–68,104,117. Interestingly, 
only a proportion of the opaque pheromone response pathway is used in white cells; 
they use a hybrid pathway with new downstream components66–68. Opaque cells may 
be rare in many niches, and the biological role of this white cell biofilm seems to be to 
facilitate mating among disperse opaque cells65,110,115.
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Ergosterol
The main sterol in the fungal 
cell membrane. Ergosterol is 
responsible, and essential, for 
structural and regulatory 
membrane features such as 
fluidity and permeability 
(equivalent to cholesterol in 
mammalian cells). 

Azole
A class of antifungal drug that 
inhibits a late step in the 
biosynthesis of ergosterol;  
this includes the triazoles (for 
example, fluconazole, 
voriconazole and posaconazole) 
and the imidazoles. 

from longer glucan chains. The precise functions of 
the alcohol dehydrogenase-related proteins Csh1, Ifd6 
and Adh5 are unknown, but several similar S. cerevisiae 
alcohol dehydrogenases function in the synthesis of acyl 
and aryl alcohols31,32,86,87. These alcohols have roles in 
quorum sensing and cell signalling (BOX 1), as indicated 
by effects on hyphal growth, for example15–18,20,88. Thus, 
a possible mechanistic role for these dehydrogenases 
is to promote the biogenesis of biofilm-associated acyl 
and aryl alcohols, which, in turn, would control matrix 
synthesis. Csh1 and Ifd6 might function preferentially 
to yield a matrix-inhibitory signal, whereas Adh5 might 
function preferentially to yield a matrix-stimulatory sig-
nal29. The known role of Zap1 in zinc-responsive gene 
expression indicates that ambient zinc levels could be a 
crucial determinant of biofilm matrix formation.

Zap1 could have a broader role in biofilm matura-
tion than simply the control of matrix accumulation. 
The zap1–/– mutant has reduced expression of several 
genes that are normally upregulated in mature bio-
films, including those encoding ergosterol biosynthesis 
enzymes and putative hexose transporters29. Thus, Zap1 
seems to govern several aspects of biofilm maturation. 
It will be interesting to see whether any of these mutant 
phenotypes reflect the postulated alteration of the levels 
of quorum sensing molecules.

A unique feature of mature biofilms, in addition 
to matrix accumulation, is the acquisition of high-
level resistance to antifungals5, notably the azoles and 
polyenes that target membrane sterols. The nature of 
biofilm drug resistance may reflect four distinct mecha-
nisms. First, compared with non-biofilm cells, mature 
biofilm cells have reduced amounts of membrane ster-
ols89 and elevated expression of several ergosterol bio-
synthesis genes60,90,91, which perhaps reflects hypoxia 
in these cells38,77. The ability of mature biofilm cells to 
survive with low sterol levels, combined with elevated 
levels of biosynthetic enzymes, could contribute to azole 
and polyene resistance. Indeed, a recent study showed 
that a polyene-resistant biofilm cell subpopulation dis-
played substantially increased expression of ergosterol 
biosynthesis genes92. Second, the azole efflux genes 
CDR1, CDR2 and MDR1 are induced early in biofilm 
formation and might contribute to overall azole resist-
ance. However, their phenotypic contribution is detect-
able only in early biofilm cells89. Third, as with several 
bac terial biofilms93, C. albicans biofilms contain a sub-
population of persisters that are tolerant to a range of 
otherwise cidal treatments94. The importance of this 
phenomenon is highlighted by the presence of persisters 
in human oral C. albicans populations95. Persisters do not 
have the long-term stability of mutants, but are pheno-
typic variants that may arise from an epigenetic change 
or, perhaps, transient aneuploidy96. Finally, the β-1,3 glu-
can found in the biofilm matrix binds to and sequesters 
azole drugs80. The physiological importance of this has 
been demonstrated by the analysis of a C. albicans strain 
with reduced β-1,3 glucan biosyn thesis capacity (geno-
type FKS1/fks1– (also known as GSC1/gsc1–))97. Biofilms 
formed by this strain have reduced matrix β-1,3 glucan 
and reduced azole resistance levels in both in vitro and 
in vivo models. The dramatic sensitivity of the mutant 
biofilm cells to azole treatment, particularly in the 
in vivo biofilm model, indicates that this sequestration 
mechanism is a major contributor to azole resistance in 
C. albicans biofilms97.

Cell dispersal
Ultimately, a biofilm releases cells that can initiate the 
formation of new biofilms or disseminate into host tis-
sues. Recent studies have examined the quantitative and 
qualitative properties of cells released from a C. albicans 
biofilm98,99 and have yielded three important findings. 
First, most dispersed cells are yeast cells98, as depicted 
in FIG. 2. This observation indicates that the transition 
from yeast cells to hyphae that occurs during biofilm 
initiation might be reversed for dispersal. Second, three 

Figure 3 | restoration of biofilm formation in a biofilm and cell wall regulator 1 
(bcr1)-null background by overexpression of surface protein gene agglutinin-like 
sequence 3 (ALS3). Confocal scanning laser micrographs (CSLMs) of biofilms stained 
with concanavalin A–Alexa Fluor, grown under standard in vitro conditions28. The upper 
panels are side views; the lower panels are pseudocolour depth views, in which blue 
represents cells closest to the substrate and red represents cells farthest from the 
substrate. The wild-type (WT) biofilm has a dense mixture of yeast cells and hyphae that 
gradually becomes predominantly hyphae at the top of the biofilm. The bcr1–/– biofilm 
forms a basal layer of yeast cells attached to the substrate, with few or no hyphae. 
Increased expression of ALS3 (under the control of a strong promoter, TEF) in the bcr1–/– 
strain permits substantial biofilm formation.
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Polyene
A class of antifungal drug that 
intercalates into ergosterol-
containing fungal membranes, 
thereby forming membrane- 
spanning channels that lead  
to the leakage of cellular 
components and cell death. 

Persister
A metabolically quiescent cell 
that neither grows nor dies 
when exposed to cidal 
concentrations of antimicrobial 
compounds.

new transcriptional regulators of dispersal (Ume6, 
Pes1 (also known as nop7) and nrg1) were identified. 
Overexpression of UME6 reduced the release of cells 
from a biofilm, and overexpression of either PES1 or 
NRG1 increased release98,99. Thus, changes in the expres-
sion or activity of Ume6, Pes1 or nrg1 during biofilm 
maturation — perhaps in response to the accumulation 
of quorum sensing molecules — might control cell dis-
persal. Finally, dispersed cells have phenotypes that are 
distinct from those of planktonic cells: dispersed cells 
display elevated adherence and filamentation capacity, 
and increased pathogenicity in a disseminated infection 
model, when compared with planktonic cells. Thus, the 
dispersal step releases cells that are uniquely equipped to 
seed new biofilms and sites of infection98,99.

Concluding remarks
C. albicans biofilm formation on implanted devices is 
a major source of disseminated C. albicans infection. 
The past decade has seen key advances in the identi-
fication of the C. albicans genes that govern biofilm 
development. In many cases, we have moved forwards 
from gene discovery to defining pathway relationships 

and, in some cases, we now have a mechanistic under-
standing. In addition, numerous quorum sensing mol-
ecules with potential roles in biofilm maturation have 
been defined. Moreover, there are now several animal 
models for the analysis of biofilm development in vivo 
that have validated the importance of key biofilm 
genes discovered in vitro. However, a summary of the 
progress that has been made to date also shows major 
gaps in our understanding. How can so many cell wall 
proteins participate in biofilm formation; are they all 
adhesins? which quorum sensing molecules are actu-
ally active in vivo, and can we harness their activities 
for the development of therapeutics? Can we use our 
understanding of biofilm drug resistance to develop 
better therapeutics and more focused assays of biologi-
cal activity? what are the dynamics of the formation of 
— and key molecular players in — mixed-species bio-
films? And, perhaps most difficult to answer and most 
interesting to ponder, what selective pressures caused 
the evolution of the ability to form biofilms — was it for  
mating, or for mucosal surface adherence and persist-
ence in the host? There has never been a more interesting  
time to study C. albicans biofilms.
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